A novel bearing fault diagnosis method using deep residual learning network

被引:23
|
作者
Ayas, Selen [1 ]
Ayas, Mustafa Sinasi [2 ]
机构
[1] Karadeniz Tech Univ, Dept Comp Engn, TR-61080 Trabzon, Turkey
[2] Karadeniz Tech Univ, Dept Elect & Elect Engn, TR-61080 Trabzon, Turkey
关键词
Convolutional neural networks; CWRU bearing dataset; Deep residual network; Fault diagnosis; Motor bearing; NEURAL-NETWORK;
D O I
10.1007/s11042-021-11617-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bearing fault diagnosis is a serious problem on which researchers have focused to ensure the reliability and availability of rotating machinery. Knowledge-based methods are capable of providing promising solution to bearing diagnosis problem with high accuracy performance thanks to effectively processing collected sensor and actuator data. Deep learning (DL) has the advantage of ignoring feature extraction and providing accurate diagnosis among the machine learning algorithms. In order to address this issue, in this paper, a novel DL based model is presented for fault detection and classification of motor bearing. In this work, first, time domain signals are converted to images by a proposed signal-toimage conversion approach. Then, the converted gray-scale images are fed into a novel deep residual learning (DRL) network structured to learn end-to-end mapping between images and health condition of the motor bearing. The performance of the proposed DRL network is evaluated on a commonly used real vibration dataset provided by Case Western Reserve University (CWRU). Experimental results obtained for 10 different health condition demonstrate encouraging and outperforming performance with an average accuracy of 99.98% compared to the state-of-art knowledge-based bearing fault diagnosis methods.
引用
收藏
页码:22407 / 22423
页数:17
相关论文
共 50 条
  • [21] A Novel Method for Bearing Fault Diagnosis Based on a Parallel Deep Convolutional Neural Network
    Lin, Zhuonan
    Wang, Yongxing
    Guo, Yining
    Tong, Xiangrui
    Wei, Fanrong
    Tong, Ning
    SYMMETRY-BASEL, 2024, 16 (04):
  • [22] A novel feature adaptive extraction method based on deep learning for bearing fault diagnosis
    Zhang, Tian
    Liu, Shulin
    Wei, Yuan
    Zhang, Hongli
    MEASUREMENT, 2021, 185
  • [23] A Bearing Fault Diagnosis Method with Unsupervised Deep Adaptive Network
    Yang, Qing
    Cui, Baocai
    Xue, Hui
    Wu, Dongsheng
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 6700 - 6705
  • [24] A bearing fault diagnosis method based on adaptive residual shrinkage network
    Sun, Tieyang
    Gao, Jianxiong
    Meng, Lingchao
    Huang, Zhidi
    Yang, Shuai
    Li, Miaomiao
    MEASUREMENT, 2024, 238
  • [25] A rolling bearing fault diagnosis method using novel lightweight neural network
    He, Deqiang
    Liu, Chenyu
    Chen, Yanjun
    Jin, Zhenzhen
    Li, Xianwang
    Shan, Sheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (12)
  • [26] Dynamic Wide Convolutional Residual Network for Bearing Fault Diagnosis Method
    Qin G.
    Zhang K.
    Ding K.
    Huang F.
    Zheng Q.
    Ding G.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2023, 34 (18): : 2212 - 2221
  • [27] Lightweight Bearing Fault Diagnosis Method Based on Improved Residual Network
    Gong, Lei
    Pang, Chongwen
    Wang, Guoqiang
    Shi, Nianfeng
    ELECTRONICS, 2024, 13 (18)
  • [28] Fault Diagnosis Method of Wind Turbine Rolling Bearing Based on Improved Deep Residual Shrinkage Network
    Bian W.
    Deng A.
    Liu D.
    Zhao M.
    Liu Y.
    Li J.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 202 - 214
  • [29] Bearing fault diagnosis method based on deep metric learning
    Li X.
    Xu Z.
    Xiong W.
    Wang Z.
    Tan J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (15): : 25 - 31
  • [30] An adaptive deep transfer learning method for bearing fault diagnosis
    Wu, Zhenghong
    Jiang, Hongkai
    Zhao, Ke
    Li, Xingqiu
    MEASUREMENT, 2020, 151