A novel cooling and power cycle based on the absorption power cycle and booster-assisted ejector refrigeration cycle driven by a low-grade heat source: Energy, exergy and exergoeconomic analysis

被引:58
|
作者
Wang, Yazi [1 ]
Chen, Tian [2 ]
Liang, Yingbo [1 ]
Sun, Huaibo [3 ]
Zhu, Yiping [4 ]
机构
[1] ZhouKou Normal Univ, Zhoukou 466001, Henan, Peoples R China
[2] Wuhan Univ Technol, Wuhan 430070, Hubei, Peoples R China
[3] Fuyang Normal Univ, Fuyuang 236037, Anhui, Peoples R China
[4] Tsinghua Univ, Dept Thermal Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Combined cooling and power; ERC; Booster compressor; APC; LGHS; Exergoeconomic analysis; WATER COMBINED POWER; THERMODYNAMIC ANALYSIS; LOW-TEMPERATURE; SYSTEM DRIVEN; THERMOECONOMIC ANALYSIS; OPTIMIZATION; KALINA; RECOVERY;
D O I
10.1016/j.enconman.2019.112321
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nowadays, different renewable sources and energy systems are attracting world attention due to the significant concerns about excessive emissions and the global energy crisis. To achieve both power and cooling supply for users, a new combined cooling and power system is proposed to utilizing low-grade heat sources, such as industrial waste heat, solar energy, and geothermal energy. In this paper, to enhance the efficiency of the traditional power and cooling combined system, a novel system based on the absorption power cycle (APC) and booster-assisted ejector refrigeration system is designed. In the proposed combined power and ejector refrigeration (CPER) cycle, a booster compressor is devised between the ejector and evaporator to enhance the output cooling. The system operates using the low-grade heat source (LGHS). The thermodynamic and thermoeconomics models are developed to analyze the proposed combined power and cooling system, after which, considering the mathematical analysis, the parametric investigation is employed to evaluate the impact of the design parameters on the main performance criteria. The results showed that the proposed system assisted with booster compressor has higher energy efficiency than the traditional APC cycle. The modeling results revealed that the proposed system could provide a cooling capacity of 23.89 kW and the net output power of 18.52 kW by receiving 195.5 kW energy from the low-grade heat source. Also, the first-law efficiency, second-law efficiency, and the total SUCP (Sum unit cost of the product) of the proposed plant are obtained by 21.7%, 52.22%, and 93.52 $/GJ, respectively. From the exergy analysis, it can be inferred that the maximum rate of exergy destruction among all the constitutes of the system belongs to the ejector which constitutes around 27.05% of the overall exergy destruction of system. Besides, the vapor generator 2 is responsible for the 24.31% of total exergy destruction rate. And, the highest cost of exergy destruction corresponds to the condenser followed by ejector. The parametric analysis revealed some valuable results such as a drop in the total SUCP by decreasing vapor generator 1 hot PPTD (Pinch point temperature difference), final absorption temperature, turbine inlet pressure, and LiBr mass fraction. The cooling output capacity is increasing by the increment of vapor generator 1 hot PPTD, turbine inlet pressure, and LiBr mass fraction.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Analysis of a power cycle utilizing low-grade solar energy
    Song, Jianzhong
    Zhang, Xiaosong
    2010 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2010,
  • [32] Analysis of a combined power and ejector-refrigeration cycle using low temperature heat
    Habibzadeh, A.
    Rashidi, M. M.
    Galanis, N.
    ENERGY CONVERSION AND MANAGEMENT, 2013, 65 : 381 - 391
  • [33] Energy and exergy analysis of a novel ejector-absorption combined refrigeration cycle using natural refrigerants
    Verma, Abhishek
    Kaushik, S. C.
    Tyagi, S. K.
    INTERNATIONAL JOURNAL OF EXERGY, 2022, 39 (02) : 142 - 159
  • [34] Performance analysis of a biomass-fired cooling/power combined cycle (Ejector Refrigeration and Kalina cycle)
    Seckin, Candeniz
    2019 5TH INTERNATIONAL CONFERENCE ON POWER GENERATION SYSTEMS AND RENEWABLE ENERGY TECHNOLOGIES (PGSRET-2019), 2019, : 100 - 105
  • [35] Low-grade heat source utilization by carbon dioxide transcritical power cycle
    Chen, Yang
    Pridasawas, Wimolsiri
    Lundqvist, Per
    PROCEEDINGS OF THE ASME/JSME THERMAL ENGINEERING SUMMER HEAT TRANSFER CONFERENCE 2007, VOL 1, 2007, : 519 - 525
  • [36] Theoretical Analysis of Organic Rankine Cycle Combine Power and Ejector Refrigeration Driven By Solar Energy
    Wang, Nan
    Chen, Jiufa
    CLEANER ENERGY FOR CLEANER CITIES, 2018, 152 : 109 - 114
  • [37] Energy and exergy analyses of a solar assisted combined power and cooling cycle
    Ganjehsarabi, Hadi
    Asker, Mustafa
    Seyhan, Aslihan Kurnuc
    2016 IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2016, : 1141 - 1145
  • [38] Thermodynamic and Comparative Analysis of Ejector Refrigeration Cycle and Absorption Refrigeration Cycle Integrated Wet Ethanol-Fueled HCCI Engine for Cogeneration of Power and Cooling
    Siddiqui, Mohd Asjad
    Khaliq, Abdul
    Kumar, Rajesh
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2022, 14 (04)
  • [39] Parametric analysis for a new combined power and ejector-absorption refrigeration cycle
    Wang, Jiangfeng
    Dai, Yiping
    Zhang, Taiyong
    Ma, Shaolin
    ENERGY, 2009, 34 (10) : 1587 - 1593
  • [40] ENERGY AND EXERGY ANALYSIS OF A WASTE HEAT DRIVEN CYCLE FOR TRIPLE EFFECT REFRIGERATION
    Dixit, Manoj
    Arora, Akhilesh
    Kaushik, S. C.
    JOURNAL OF THERMAL ENGINEERING, 2016, 2 (05): : 954 - 961