Optimal robust output control

被引:0
|
作者
Balandin, D. V.
Kogan, M. M.
机构
[1] Nizhnii Novgorod State Univ, Dept Numer & Funct Anal, Nizhnii Novgorod 603005, Russia
[2] Nizhni Novgorod State Univ Architecture & Bldg, Nizhnii Novgorod 603950, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1064562407050389
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An optimal robust output controller that minimizes the bound for the objective functional for all admissible uncertainties is presented. The classical optimal linear quadratic control problem consists of finding a control law minimizing a quadratic functional on trajectories of linear dynamic object and has a solution if the total state vector of the object can be measured and if the model of the object is free of uncertainties. The parameter matrix of optimal robust control law can be found by solving the linear matrix inequality. The equations of the closed-loop system are written as an impulsive system with zero initial conditions. The condition is expressed in terms of linear matrix inequalities. The method is also applicable to the singular case.
引用
收藏
页码:794 / 796
页数:3
相关论文
共 50 条
  • [41] Robust Control Strategy on Output Current of Converter
    Pan Jinghui
    Zhang Weicun
    Guo Kai
    Pan Yuedou
    2017 9TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC 2017), 2017, : 953 - 957
  • [42] On robust output feedback control for polytopic systems
    Bernussou, J.
    Geromel, J. C.
    Korogui, R. H.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 5018 - 5023
  • [43] Adaptive robust fuzzy control for output tracking
    Tang, Y
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 1788 - 1793
  • [44] Optimization of Parameter Matrix : Optimal Output Feedback Control and Optimal PID Control
    Shimizu, Kiyotaka
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 1734 - 1739
  • [45] Optimal, near-optimal, and robust epidemic control
    Morris, Dylan H.
    Rossine, Fernando W.
    Plotkin, Joshua B.
    Levin, Simon A.
    COMMUNICATIONS PHYSICS, 2021, 4 (01)
  • [46] Optimal, near-optimal, and robust epidemic control
    Dylan H. Morris
    Fernando W. Rossine
    Joshua B. Plotkin
    Simon A. Levin
    Communications Physics, 4
  • [47] Output Feedback Control for Constrained Robust Model Predictive Control
    Liu, Hui-Wei
    Chang, Xiao-Heng
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1650 - 1655
  • [48] Robust Control Invariance for Networked Control Systems with Output Feedback
    Bahraini, Masoud
    Colombo, Alessandro
    Zanon, Mario
    Falcone, Paolo
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 7676 - 7681
  • [49] Robust optimal control of regular languages
    Lagoa, CM
    Fu, JB
    Ray, A
    AUTOMATICA, 2005, 41 (08) : 1439 - 1445
  • [50] Optimal Control Strategies for Robust Certification
    Leyendecker, Sigrid
    Lucas, Leonard J.
    Owhadi, Houman
    Ortiz, Michael
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2010, 5 (03): : 1 - 10