Optimal robust output control

被引:0
|
作者
Balandin, D. V.
Kogan, M. M.
机构
[1] Nizhnii Novgorod State Univ, Dept Numer & Funct Anal, Nizhnii Novgorod 603005, Russia
[2] Nizhni Novgorod State Univ Architecture & Bldg, Nizhnii Novgorod 603950, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1064562407050389
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An optimal robust output controller that minimizes the bound for the objective functional for all admissible uncertainties is presented. The classical optimal linear quadratic control problem consists of finding a control law minimizing a quadratic functional on trajectories of linear dynamic object and has a solution if the total state vector of the object can be measured and if the model of the object is free of uncertainties. The parameter matrix of optimal robust control law can be found by solving the linear matrix inequality. The equations of the closed-loop system are written as an impulsive system with zero initial conditions. The condition is expressed in terms of linear matrix inequalities. The method is also applicable to the singular case.
引用
收藏
页码:794 / 796
页数:3
相关论文
共 50 条
  • [21] Approach to robust optimal control
    Univ of Auckland, Auckland, New Zealand
    Int J Control, 4 (885-896):
  • [22] Robust optimal switching control
    Liu, HJ
    Mu, XW
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 1537 - 1544
  • [23] Contrained robust optimal control
    不详
    CONSTRAINED OPTIMAL CONTROL OF LINEAR AND HYBRID SYSTEMS, 2003, 290 : 103 - 116
  • [24] Digital Optimal Robust Control
    Harutyunyan, Meri
    Holweck, Frederic
    Sugny, Dominique
    Guerin, Stephane
    PHYSICAL REVIEW LETTERS, 2023, 131 (20)
  • [25] Towards Optimal Tuning of Robust Output Feedback MPC
    Koegel, Markus
    Findeisen, Rolf
    IFAC PAPERSONLINE, 2018, 51 (20): : 134 - 140
  • [26] Inverse Optimal Control with System Output
    Liang, Zihao
    Mou, Shaoshuai
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS 2024, 2024,
  • [27] An optimal control approach to robust control design
    Lin, F
    INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (03) : 177 - 186
  • [28] Control relevant identification for robust optimal control
    Dinata, NK
    Cluett, WR
    AUTOMATICA, 2005, 41 (08) : 1349 - 1357
  • [29] Robust optimal output-feedback control of piezoelectric motion systems with composite adaptive hysteresis compensation
    Zhang, Yangming
    Fang, Jianyin
    Wu, Mingfan
    Wang, Zi-Peng
    NONLINEAR DYNAMICS, 2024, : 8641 - 8653
  • [30] Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming
    Gao, Weinan
    Jiang, Yu
    Jiang, Zhong-Ping
    Chai, Tianyou
    AUTOMATICA, 2016, 72 : 37 - 45