Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

被引:20
|
作者
Vukmirovic, Petar [1 ]
Blanchette, Jasmin Christian [1 ,2 ]
Cruanes, Simon [3 ]
Schulz, Stephan [4 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam, Netherlands
[2] Max Planck Inst Informat, Saarland Informat Campus, Saarbrucken, Germany
[3] Aesthet Integrat, Austin, TX USA
[4] DHBW Stuttgart, Stuttgart, Germany
基金
欧洲研究理事会;
关键词
THEOREM-PROVING SYSTEM;
D O I
10.1007/978-3-030-17462-0_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decades of work have gone into developing efficient proof calculi, data structures, algorithms, and heuristics for first-order automatic theorem proving. Higher-order provers lag behind in terms of efficiency. Instead of developing a new higher-order prover from the ground up, we propose to start with the state-of-the-art superposition-based prover E and gradually enrich it with higher-order features. We explain how to extend the prover's data structures, algorithms, and heuristics to.-free higher-order logic, a formalism that supports partial application and applied variables. Our extension outperforms the traditional encoding and appears promising as a stepping stone towards full higher-order logic.
引用
收藏
页码:192 / 210
页数:19
相关论文
共 50 条
  • [41] Topological completeness for higher-order logic
    Awodey, S
    Butz, C
    JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (03) : 1168 - 1182
  • [42] Modal Pluralism and Higher-Order Logic
    Clarke-Doane, Justin
    McCarthy, William
    PHILOSOPHICAL PERSPECTIVES, 2022, 36 (01) : 31 - 58
  • [43] SOME REMARKS ON HIGHER-ORDER LOGIC
    KOGALOVSKII, SR
    DOKLADY AKADEMII NAUK SSSR, 1968, 178 (05): : 1007 - +
  • [44] Learning higher-order logic programs
    Andrew Cropper
    Rolf Morel
    Stephen Muggleton
    Machine Learning, 2020, 109 : 1289 - 1322
  • [45] RESULTS IN HIGHER-ORDER MODAL LOGIC
    GALLIN, D
    JOURNAL OF SYMBOLIC LOGIC, 1974, 39 (01) : 197 - 198
  • [46] Higher-order modal logic - A sketch
    Fitting, H
    AUTOMATED DEDUCTION IN CLASSICAL AND NON-CLASSICAL LOGICS, 2000, 1761 : 23 - 38
  • [47] HIGHER-ORDER ILLATIVE COMBINATORY LOGIC
    Czajka, Lukasz
    JOURNAL OF SYMBOLIC LOGIC, 2013, 78 (03) : 837 - 872
  • [48] ON NONSTANDARD MODELS IN HIGHER-ORDER LOGIC
    HORT, C
    OSSWALD, H
    JOURNAL OF SYMBOLIC LOGIC, 1984, 49 (01) : 204 - 219
  • [49] Extensional Higher-Order Logic Programming
    Charalambidis, Angelos
    Handjopoulos, Konstantinos
    Rondogiannis, Panagiotis
    Wadge, William W.
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2013, 14 (03)
  • [50] Learning higher-order logic programs
    Cropper, Andrew
    Morel, Rolf
    Muggleton, Stephen
    MACHINE LEARNING, 2020, 109 (07) : 1289 - 1322