Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

被引:20
|
作者
Vukmirovic, Petar [1 ]
Blanchette, Jasmin Christian [1 ,2 ]
Cruanes, Simon [3 ]
Schulz, Stephan [4 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam, Netherlands
[2] Max Planck Inst Informat, Saarland Informat Campus, Saarbrucken, Germany
[3] Aesthet Integrat, Austin, TX USA
[4] DHBW Stuttgart, Stuttgart, Germany
基金
欧洲研究理事会;
关键词
THEOREM-PROVING SYSTEM;
D O I
10.1007/978-3-030-17462-0_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decades of work have gone into developing efficient proof calculi, data structures, algorithms, and heuristics for first-order automatic theorem proving. Higher-order provers lag behind in terms of efficiency. Instead of developing a new higher-order prover from the ground up, we propose to start with the state-of-the-art superposition-based prover E and gradually enrich it with higher-order features. We explain how to extend the prover's data structures, algorithms, and heuristics to.-free higher-order logic, a formalism that supports partial application and applied variables. Our extension outperforms the traditional encoding and appears promising as a stepping stone towards full higher-order logic.
引用
收藏
页码:192 / 210
页数:19
相关论文
共 50 条
  • [31] A logic of higher-order preferences
    Jiang, Junli
    Naumov, Pavel
    SYNTHESE, 2024, 203 (06)
  • [32] The Higher-Order Prover Leo-III (Extended Abstract)
    Steen, Alexander
    Benzmueller, Christoph
    ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2019, 2019, 11793 : 333 - 337
  • [33] On the Relationship between Higher-Order Recursion Schemes and Higher-Order Fixpoint Logic
    Kobayashi, Naoki
    Lozes, Etienne
    Bruse, Florian
    ACM SIGPLAN NOTICES, 2017, 52 (01) : 246 - 259
  • [34] Extensional Higher-Order Logic Programming
    Charalambidis, Angelos
    Handjopoulos, Konstantinos
    Rondogiannis, Panos
    Wadge, William W.
    LOGICS IN ARTIFICIAL INTELLIGENCE, JELIA 2010, 2010, 6341 : 91 - 103
  • [35] HAUPTSATZ FOR HIGHER-ORDER MODAL LOGIC
    NISHIMURA, H
    JOURNAL OF SYMBOLIC LOGIC, 1983, 48 (03) : 744 - 751
  • [36] Partiality and Recursion in Higher-Order Logic
    Czajka, Lukasz
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES (FOSSACS 2013), 2013, 7794 : 177 - 192
  • [37] EXTENDING THE IMAGE METHOD TO HIGHER-ORDER REFLECTIONS
    KRISTIANSEN, UR
    KROKSTAD, A
    FOLLESTAD, T
    APPLIED ACOUSTICS, 1993, 38 (2-4) : 195 - 206
  • [38] A NOTE ON THE LOGIC OF (HIGHER-ORDER) VAGUENESS
    HECK, RG
    ANALYSIS, 1993, 53 (04) : 201 - 208
  • [39] On Models of Higher-Order Separation Logic
    Bizjak, Ales
    Birkedal, Lars
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2018, 336 : 57 - 78
  • [40] Superposition for Full Higher-order Logic
    Bentkamp, Alexander
    Blanchette, Jasmin
    Tourret, Sophie
    Vukmirovic, Petar
    AUTOMATED DEDUCTION, CADE 28, 2021, 12699 : 396 - 412