Using ancillary data to improve classification of degraded Mediterranean vegetation with HyMap spectroscopic images

被引:0
|
作者
Sluiter, R [1 ]
de Jong, SM [1 ]
机构
[1] Univ Utrecht, Fac Geosci, Utrecht, Netherlands
关键词
Mediterranean; vegetation; classification; ancillary data; HyMap; MODELING PROCEDURE;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Accurate land cover maps based on remote sensing observations are required for a.o. the evaluation of vegetation change models. In this study, where we investigate the intensification and extensification of land use in an area in southern France, purely spectrally based classification accuracy proved not to be sufficient. Therefore, we present a method to classify Mediterranean vegetation communities by integrating environmental and ecological information into a spatio-temporal image classification model: the Ancillary Data Classification Model (ADCM). Compared to a traditional Spectral Angle Mapper classification with 14 classes, the new proposed ADCM yields an increase of overall accuracy from 51 to 69 %. We anticipate that the use of additional environmental factors will further improve the classification results.
引用
收藏
页码:219 / 226
页数:8
相关论文
共 50 条
  • [41] Adaptive binary material classification of an unknown object using polarimetric images degraded by atmospheric turbulence
    Kim, Mu J.
    Hyde, Milo W.
    IMAGE RECONSTRUCTION FROM INCOMPLETE DATA VII, 2012, 8500
  • [42] Using an ontology of the human cardiovascular system to improve the classification of histological images
    Mazo, Claudia
    Alegre, Enrique
    Trujillo, Maria
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [43] Using unsupervised neural network approach to improve classification of satellite images
    Sari, Karima
    Ghedjati, Fatima
    Tighiouart, Bornia
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2015, 51 (01) : 3 - 8
  • [44] Using an ontology of the human cardiovascular system to improve the classification of histological images
    Claudia Mazo
    Enrique Alegre
    Maria Trujillo
    Scientific Reports, 10
  • [45] Messinian vegetation maps of the Mediterranean region using models and interpolated pollen data
    Favre, Eric
    Francois, Louis
    Fluteau, Frederic
    Cheddadi, Rachid
    Thevenod, Lysiane
    Suc, Jean-Pierre
    GEOBIOS, 2007, 40 (03) : 433 - 443
  • [46] A Survey On Urban Vegetation Detection Using Airborne Lidar Data Images
    Vengadeswari, R.
    Rajalakshmi, S.
    2013 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2013, : 937 - 942
  • [47] Improving information content of images of vegetation objects using spectral data
    Belyaev Yu.V.
    Katkovskii L.V.
    Khvalei S.V.
    Khomitsevich A.D.
    J. Appl. Spectrosc., 2007, 5 (744-751): : 744 - 751
  • [48] Wetlands Mapping in North America by Decision Rule Classification Using MODIS and Ancillary Data
    Tana, Gegen
    Letu, Husi
    Cheng, Zhongkai
    Tateishi, Ryutaro
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (06) : 2391 - 2401
  • [49] Comparison of vegetation regeneration after wildfire between Mediterranean and tundra ecosystems by using Landsat images
    Yeung, Cheuklap Au
    Li, Rongrong
    ANNALS OF GIS, 2018, 24 (02) : 99 - 112
  • [50] Vegetation change detection using artificial neural networks with ancillary data in Xishuangbanna, Yunnan Province, China
    Zhang ZhiMing
    Lieven Verbeke
    Eva De Clercq
    Ou Xiakun
    Robert De Wulf
    CHINESE SCIENCE BULLETIN, 2007, 52 : 232 - 243