Using ancillary data to improve classification of degraded Mediterranean vegetation with HyMap spectroscopic images

被引:0
|
作者
Sluiter, R [1 ]
de Jong, SM [1 ]
机构
[1] Univ Utrecht, Fac Geosci, Utrecht, Netherlands
关键词
Mediterranean; vegetation; classification; ancillary data; HyMap; MODELING PROCEDURE;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Accurate land cover maps based on remote sensing observations are required for a.o. the evaluation of vegetation change models. In this study, where we investigate the intensification and extensification of land use in an area in southern France, purely spectrally based classification accuracy proved not to be sufficient. Therefore, we present a method to classify Mediterranean vegetation communities by integrating environmental and ecological information into a spatio-temporal image classification model: the Ancillary Data Classification Model (ADCM). Compared to a traditional Spectral Angle Mapper classification with 14 classes, the new proposed ADCM yields an increase of overall accuracy from 51 to 69 %. We anticipate that the use of additional environmental factors will further improve the classification results.
引用
收藏
页码:219 / 226
页数:8
相关论文
共 50 条
  • [31] AUTOMATED FOREST COVER MAPPING USING THEMATIC MAPPER IMAGES AND ANCILLARY DATA
    NIEMANN, O
    APPLIED GEOGRAPHY, 1993, 13 (01) : 86 - 95
  • [32] Capabilities of ERS sensor for Mediterranean vegetation detection using multitemporal data
    Chust, G
    Ducrot, D
    Bruniquel, J
    Pretus, JL
    SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES III, 2000, 4173 : 291 - 302
  • [33] Image segmentation for classification of vegetation using NOAA AVHRR data
    Rodríguez-Yi, JL
    Shimabukuro, YE
    Rudorff, BFT
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (01) : 167 - 172
  • [34] The research of vegetation coverage classification using NDVI data in China
    Cheng, CQ
    Wang, H
    Ma, T
    Li, B
    2001 INTERNATIONAL CONFERENCES ON INFO-TECH AND INFO-NET PROCEEDINGS, CONFERENCE A-G: INFO-TECH & INFO-NET: A KEY TO BETTER LIFE, 2001, : A195 - A199
  • [35] CLASSIFICATION OF THE VEGETATION OF BOREAL FORESTS USING OKEAN SATELLITE DATA
    BELCHANSKII, GI
    MORDVINTSEV, IN
    OVCHINNIKOV, GK
    PETROSYAN, VG
    DOUGLAS, D
    PANK, L
    SOVIET JOURNAL OF REMOTE SENSING, 1994, 11 (02): : 226 - 244
  • [36] The Robust Classification for Large Data (Case: Classification of Jakarta Vegetation area by Using Remote Sensing Data)
    Herwindiati, Dyah E.
    Isa, Sani M.
    Arisandi, Desi
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL III, 2011, : 1895 - 1900
  • [37] SVM spatio-temporal vegetation classification using HR satellite images
    Rejichi, S.
    Chaabane, F.
    SENSORS, SYSTEMS, AND NEXT-GENERATION SATELLITES XV, 2011, 8176
  • [38] Vegetation coverage classification using texture analysis on high resolution satellite images
    Abadi, Mohamed
    Grandchamp, Enguerran
    TRAITEMENT DU SIGNAL, 2009, 26 (02) : 175 - 185
  • [39] Multitemporal Classification of River Floodplain Vegetation Using Time Series of UAV Images
    van Iersel, Wimala
    Straatsma, Menno
    Middelkoop, Hans
    Addink, Elisabeth
    REMOTE SENSING, 2018, 10 (07)
  • [40] Use of a hybrid supervised and unsupervised classification model to determine nitrogen concentration of eucalypt tree foliage using HyMap data
    Dury, SJ
    Jia, X
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 640 - 642