On the improvement of the Hardy inequality due to singular magnetic fields

被引:7
|
作者
Fanelli, Luca [1 ]
Krejcirik, David [2 ]
Laptev, Ari [3 ]
Vega, Luis [4 ,5 ]
机构
[1] SAPIENZA Univ Roma, Dipartimento Matemat, Rome, Italy
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Prague 2, Czech Republic
[3] Imperial Coll London, Dept Math, London, England
[4] Univ Basque Country, Dept Matemat, Bilbao, Spain
[5] BCAM, Bilbao, Spain
关键词
Hardy inequality; singular magnetic field; Aharonov-Bohm potential; TIME-DECAY; SCHRODINGER;
D O I
10.1080/03605302.2020.1763399
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish magnetic improvements upon the classical Hardy inequality for two specific choices of singular magnetic fields. First, we consider the Aharonov-Bohm field in all dimensions and establish a sharp Hardy-type inequality that takes into account both the dimensional as well as the magnetic flux contributions. Second, in the three-dimensional Euclidean space, we derive a non-trivial magnetic Hardy inequality for a magnetic field that vanishes at infinity and diverges along a plane.
引用
收藏
页码:1202 / 1212
页数:11
相关论文
共 50 条
  • [1] Improvement of the discrete Hardy inequality
    Roychowdhury, Prasun
    Suragan, Durvudkhan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 195
  • [2] A magnetic contribution to the Hardy inequality
    Ekholm, T.
    Portmann, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (02)
  • [3] Improvement on Hardy's inequality in an interval
    Huang, Qi-liang
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 2000, 39 (03): : 20 - 24
  • [4] Hardy-type inequality with double singular kernels
    Fabricant, Alexander
    Kutev, Nikolai
    Rangelov, Tsviatko
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (09): : 1689 - 1697
  • [5] IMPROVEMENT OF AN INEQUALITY OF G.H. HARDY
    Iqbal, Sajid
    Krulic, Kristina
    Pecaric, Josip
    TAMKANG JOURNAL OF MATHEMATICS, 2012, 43 (03): : 399 - 416
  • [6] SELF-IMPROVEMENT OF POINTWISE HARDY INEQUALITY
    Eriksson-Bique, Sylvester
    Vahakangas, Antti V.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) : 2235 - 2250
  • [7] A Hardy Inequality with a Point-Singular Weight Inside a Domain
    Timerbaev, M. R.
    Timerbaeva, N. V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2013, 34 (04) : 406 - 411
  • [8] Extremal functions for a singular Hardy-Moser-Trudinger inequality
    Hou, Songbo
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (12) : 2557 - 2570
  • [9] The Compactness of Extremals for a Singular Hardy-Trudinger-Moser Inequality
    Luo, Qianjin
    Li, Xiaomeng
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 37 (03): : 235 - 250
  • [10] Extremal functions for a singular Hardy-Moser-Trudinger inequality
    Songbo Hou
    Science China(Mathematics), 2019, 62 (12) : 2557 - 2570