A magnetic contribution to the Hardy inequality

被引:5
|
作者
Ekholm, T. [1 ]
Portmann, F. [1 ]
机构
[1] KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
SCHRODINGER-OPERATORS; DIRICHLET FORMS;
D O I
10.1063/1.4863900
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the quadratic form associated to the kinetic energy operator in the presence of an external magnetic field in d = 3. We show that if the radial component of the magnetic field does not vanish identically, then the classical lower bound given by Hardy is improved by a non-negative potential term depending on properties of the magnetic field. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Generalized Hardy inequality for the magnetic Dirichlet forms
    Balinsky, A
    Laptev, A
    Sobolev, AV
    JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 507 - 521
  • [2] Generalized Hardy Inequality for the Magnetic Dirichlet Forms
    Alexander Balinsky
    Ari Laptev
    Alexander V. Sobolev
    Journal of Statistical Physics, 2004, 116 : 507 - 521
  • [3] On the improvement of the Hardy inequality due to singular magnetic fields
    Fanelli, Luca
    Krejcirik, David
    Laptev, Ari
    Vega, Luis
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (09) : 1202 - 1212
  • [4] Hardy inequality and trace Hardy inequality for Dunkl gradient
    V. P. Anoop
    Sanjay Parui
    Collectanea Mathematica, 2019, 70 : 367 - 398
  • [5] The Hardy inequality and fractional Hardy inequality for the Dunkl Laplacian
    Anoop, V. P.
    Parui, Sanjay
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 236 (01) : 247 - 278
  • [6] Hardy inequality and trace Hardy inequality for Dunkl gradient
    Anoop, V. P.
    Parui, Sanjay
    COLLECTANEA MATHEMATICA, 2019, 70 (03) : 367 - 398
  • [7] The Hardy inequality and fractional Hardy inequality for the Dunkl Laplacian
    V. P. Anoop
    Sanjay Parui
    Israel Journal of Mathematics, 2020, 236 : 247 - 278
  • [8] ON HARDY INEQUALITY
    STEELE, JM
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (04): : 263 - 264
  • [9] An inequality of hardy
    Leibowitz, G
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (09): : 860 - 860
  • [10] A FRACTIONAL MAGNETIC HARDY-SOBOLEV INEQUALITY WITH TWO VARIABLES
    Liu, Min
    Chen, Deyan
    Guo, Zhenyu
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (01): : 181 - 187