Improvement of the discrete Hardy inequality

被引:1
|
作者
Roychowdhury, Prasun [1 ]
Suragan, Durvudkhan [2 ]
机构
[1] Natl Taiwan Univ, Math Div, Natl Ctr Theoret Sci, 1 Sec 4 Roosevelt Rd, Taipei 10617, Taiwan
[2] Nazarbayev Univ, Dept Math, Astana, Kazakhstan
来源
关键词
Discrete Hardy's inequality; Sharp constant; Difference operator; Uncertainty principle of discrete; datum;
D O I
10.1016/j.bulsci.2024.103468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a novel improvement of the classical discrete Hardy inequality, which gives the discrete version of a recent (continuous) inequality of Frank, Laptev, and Weidl. Our arguments build on certain weighted inequalities based on discrete analogues of symmetric decreasing rearrangement techniques. (c) 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] ON THE DISCRETE HARDY INEQUALITY
    BRAVERMAN, MS
    STEPANOV, VD
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 283 - 287
  • [2] An Improved Discrete Hardy Inequality
    Keller, Matthias
    Pinchover, Yehuda
    Pogorzelski, Felix
    AMERICAN MATHEMATICAL MONTHLY, 2018, 125 (04): : 347 - 350
  • [3] Hardy's discrete inequality
    Handley, GD
    Koliha, JJ
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (02): : 187 - 197
  • [4] AN APPLICATION OF THE WEIGHTED DISCRETE HARDY INEQUALITY
    BUI, G. I. A. O.
    LOPEZ-GARCIA, F. E. R. N. A. N. D. O.
    Van Tran
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (03): : 771 - 772
  • [5] Improvement on Hardy's inequality in an interval
    Huang, Qi-liang
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 2000, 39 (03): : 20 - 24
  • [6] An Improved Discrete p-Hardy Inequality
    Fischer, Florian
    Keller, Matthias
    Pogorzelski, Felix
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (04)
  • [7] An Improved Discrete p-Hardy Inequality
    Florian Fischer
    Matthias Keller
    Felix Pogorzelski
    Integral Equations and Operator Theory, 2023, 95
  • [8] Weight characterizations for the discrete Hardy inequality with kernel
    Okpoti, Christopher A.
    Persson, Lars-Erik
    Wedestig, Anna
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1)
  • [9] Weight characterizations for the discrete Hardy inequality with kernel
    Christopher A. Okpoti
    Lars-Erik Persson
    Anna Wedestig
    Journal of Inequalities and Applications, 2006
  • [10] A short direct proof of the discrete Hardy inequality
    Lefevre, Pascal
    ARCHIV DER MATHEMATIK, 2020, 114 (02) : 195 - 198