Visual subspace clustering based on dimension relevance

被引:11
|
作者
Xia, Jiazhi [1 ]
Jiang, Guang [1 ]
Zhang, YuHong [1 ]
Li, Rui [1 ]
Chen, Wei [2 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha, Hunan, Peoples R China
[2] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou, Zhejiang, Peoples R China
基金
高等学校博士学科点专项科研基金; 美国国家科学基金会; 中国国家自然科学基金;
关键词
High dimensional data; Subspace clustering; Interactive visual analysis; Dimension relevance; DATA VISUALIZATION; EXPLORATION;
D O I
10.1016/j.jvlc.2017.05.003
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The proposed work aims at visual subspace clustering and addresses two challenges: an efficient visual subspace clustering workflow and an intuitive visual description of subspace structure. Handling the first challenge is to escape the circular dependency between detecting meaningful subspaces and discovering clusters. We propose a dimension relevance measure to indicate the cluster significance in the corresponding subspace. The dynamic dimension relevance guides the subspace exploring in our visual analysis system. To address the second challenge, we propose hyper-graph and the visualization of it to describe the structure of subspaces. Dimension overlapping between subspaces and data overlapping between clusters are clearly shown with our visual design. Experimental results demonstrate that our approach is intuitive, efficient, and robust in visual subspace clustering. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 50 条
  • [41] Subspace Clustering Based Analysis of Neural Networks
    Saini, Uday Singh
    Devineni, Pravallika
    Papalexakis, Evangelos E.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 697 - 712
  • [42] Metric Learning-Based Subspace Clustering
    Xu, Yesong
    Chen, Shuo
    Li, Jun
    Yang, Jian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025,
  • [43] Enhancing subspace clustering based on dynamic prediction
    Pech, Ratha
    Hao, Dong
    Cheng, Hong
    Zhou, Tao
    FRONTIERS OF COMPUTER SCIENCE, 2019, 13 (04) : 802 - 812
  • [44] Margin-Based Active Subspace Clustering
    Lipor, John
    Balzano, Laura
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 377 - 380
  • [45] Visual dimension analysis based on dimension subdivision
    Zhang, Yi
    Yu, Chenxi
    Wang, Ruoqi
    Liu, Xunhan
    JOURNAL OF VISUALIZATION, 2021, 24 (01) : 117 - 131
  • [46] Visual dimension analysis based on dimension subdivision
    Yi Zhang
    Chenxi Yu
    Ruoqi Wang
    Xunhan Liu
    Journal of Visualization, 2021, 24 : 117 - 131
  • [47] Dimension-based subspace search for outlier detection
    Trittenbach, Holger
    Boehm, Klemens
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2019, 7 (02) : 87 - 101
  • [48] ON THE DIMENSION OF A FUZZY SUBSPACE
    KUMAR, R
    FUZZY SETS AND SYSTEMS, 1993, 54 (02) : 229 - 234
  • [49] Sampling-Based Dimension Reduction for Subspace Approximation
    Deshpande, Amit
    Varadarajan, Kasturi
    STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 641 - 650
  • [50] Dimension Reconstruction for Visual Exploration of Subspace Clusters in High-dimensional Data
    Zhou, Fangfang
    Li, Juncai
    Huang, Wei
    Zhao, Ying
    Yuan, Xiaoru
    Liang, Xing
    Shi, Yang
    2016 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2016, : 128 - 135