Visual subspace clustering based on dimension relevance

被引:11
|
作者
Xia, Jiazhi [1 ]
Jiang, Guang [1 ]
Zhang, YuHong [1 ]
Li, Rui [1 ]
Chen, Wei [2 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha, Hunan, Peoples R China
[2] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou, Zhejiang, Peoples R China
基金
高等学校博士学科点专项科研基金; 美国国家科学基金会; 中国国家自然科学基金;
关键词
High dimensional data; Subspace clustering; Interactive visual analysis; Dimension relevance; DATA VISUALIZATION; EXPLORATION;
D O I
10.1016/j.jvlc.2017.05.003
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The proposed work aims at visual subspace clustering and addresses two challenges: an efficient visual subspace clustering workflow and an intuitive visual description of subspace structure. Handling the first challenge is to escape the circular dependency between detecting meaningful subspaces and discovering clusters. We propose a dimension relevance measure to indicate the cluster significance in the corresponding subspace. The dynamic dimension relevance guides the subspace exploring in our visual analysis system. To address the second challenge, we propose hyper-graph and the visualization of it to describe the structure of subspaces. Dimension overlapping between subspaces and data overlapping between clusters are clearly shown with our visual design. Experimental results demonstrate that our approach is intuitive, efficient, and robust in visual subspace clustering. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 50 条
  • [21] Connectedness-based subspace clustering
    Namita Jain
    C. A. Murthy
    Knowledge and Information Systems, 2019, 58 : 9 - 34
  • [22] ON A SUBSPACE DIMENSION
    TKACHUK, VV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1981, (02): : 21 - 25
  • [23] Joint subspace learning and subspace clustering based unsupervised feature selection
    Xiao, Zijian
    Chen, Hongmei
    Mi, Yong
    Luo, Chuan
    Horng, Shi-Jinn
    Li, Tianrui
    NEUROCOMPUTING, 2025, 635
  • [24] Visual Clustering Method of Quasi-Circular Mapping Based on Dimension Extension and Rearrangement
    Huang S.
    Li M.
    Chen H.
    Li J.
    Zhang C.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (04): : 326 - 335
  • [25] Dimension reduction graph-based sparse subspace clustering for intelligent fault identification of rolling element bearings
    Zhao, Le
    Yang, Shaopu
    Liu, Yongqiang
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2021, 1 (02): : 207 - 219
  • [26] Subspace clustering
    Kriegel, Hans-Peter
    Kroeger, Peer
    Zimek, Arthur
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2012, 2 (04) : 351 - 364
  • [27] Subspace Clustering
    Vidal, Rene
    IEEE SIGNAL PROCESSING MAGAZINE, 2011, 28 (02) : 52 - 68
  • [28] Candidate pruning based density subspace clustering
    Zhang, Qiang
    Wu, Teng-Fei
    Yang, Ying
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2010, 43 (07): : 623 - 628
  • [29] Subspace clustering based on a multichannel attention mechanism
    Zhao, Yuxi
    Wang, Longge
    Yu, Junyang
    Zuo, Fang
    Wang, Tingyu
    Wang, Zhicheng
    Li, Han
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (04) : 1415 - 1430
  • [30] SCAD: Subspace Clustering based Adversarial Detector
    Hu, Xinrong
    Chen, Wushuan
    Yang, Jie
    Guo, Yi
    Yao, Xun
    Wang, Bangchao
    Liu, Junping
    Xu, Ce
    PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 286 - 294