A Hardy-Type Inequality and Its Applications

被引:11
|
作者
Dubinskii, Yu. A. [1 ]
机构
[1] Moscow Power Engn Inst Tech Univ, Moscow 111250, Russia
基金
俄罗斯基础研究基金会;
关键词
STEKLOV Institute; Poisson Equation; Quotient Space; Hardy Inequality; Solenoidal Vector;
D O I
10.1134/S0081543810020094
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Hardy-type inequality that provides a lower bound for the integral integral(infinity)(0) vertical bar f(r)vertical bar(p)r(p-1) dr, p > 1. In the scale of classical Hardy inequalities, this integral corresponds to the value of the exponential parameter for which neither direct nor inverse Hardy inequalities hold. However, the problem of estimating this integral and its multidimensional generalization from below arises in some practical questions. These are, for example, the question of solvability of elliptic equations in the scale of Sobolev spaces in the whole Euclidean space R(n) , some questions in the theory of Sobolev spaces, hydrodynamic problems, etc. These questions are studied in the present paper.
引用
收藏
页码:106 / 126
页数:21
相关论文
共 50 条
  • [41] Hardy-type inequalities for means
    Páles, Z
    Persson, LE
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (03) : 521 - 528
  • [42] On Perturbative Hardy-Type Inequalities
    Gesztesy, Fritz
    Nichols, Roger
    Pang, Michael M. H.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2023, 19 (01) : 128 - 149
  • [43] Refinements of Hardy-Type Inequalities
    Tian, Jingfeng
    Zhou, Yang-Xiu
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [44] A Hardy-type inequality and some spectral characterizations for the Dirac-Coulomb operator
    Cassano, Biagio
    Pizzichillo, Fabio
    Vega, Luis
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (01): : 1 - 18
  • [45] A HARDY-TYPE INEQUALITY WITH AHARONOV-BOHM MAGNETIC FIELD ON THE POINCARE DISK
    Zhu, Li
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (01): : 157 - 164
  • [46] Bilateral Hardy-type inequalities
    Mu Fa Chen
    Acta Mathematica Sinica, English Series, 2013, 29 : 1 - 32
  • [47] Some Hardy-type inequalities
    Cheung, WS
    Hanjs, Z
    Pecaric, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) : 621 - 634
  • [48] A generic functional inequality and Riccati pairs: an alternative approach to Hardy-type inequalities
    Kajanto, Sandor
    Kristaly, Alexandru
    Peter, Ioan Radu
    Zhao, Wei
    MATHEMATISCHE ANNALEN, 2024, 390 (03) : 3621 - 3663
  • [49] Bilateral Hardy-type Inequalities
    Mu Fa CHEN
    Acta Mathematica Sinica,English Series, 2013, (01) : 1 - 32
  • [50] Bilateral Hardy-type Inequalities
    Mu Fa CHEN
    Acta Mathematica Sinica, 2013, 29 (01) : 1 - 32