A Hardy-Type Inequality and Its Applications

被引:11
|
作者
Dubinskii, Yu. A. [1 ]
机构
[1] Moscow Power Engn Inst Tech Univ, Moscow 111250, Russia
基金
俄罗斯基础研究基金会;
关键词
STEKLOV Institute; Poisson Equation; Quotient Space; Hardy Inequality; Solenoidal Vector;
D O I
10.1134/S0081543810020094
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Hardy-type inequality that provides a lower bound for the integral integral(infinity)(0) vertical bar f(r)vertical bar(p)r(p-1) dr, p > 1. In the scale of classical Hardy inequalities, this integral corresponds to the value of the exponential parameter for which neither direct nor inverse Hardy inequalities hold. However, the problem of estimating this integral and its multidimensional generalization from below arises in some practical questions. These are, for example, the question of solvability of elliptic equations in the scale of Sobolev spaces in the whole Euclidean space R(n) , some questions in the theory of Sobolev spaces, hydrodynamic problems, etc. These questions are studied in the present paper.
引用
收藏
页码:106 / 126
页数:21
相关论文
共 50 条
  • [31] Weighted Hardy-Type Inequalities on Time Scales with Applications
    S. H. Saker
    R. R. Mahmoud
    A. Peterson
    Mediterranean Journal of Mathematics, 2016, 13 : 585 - 606
  • [32] Weighted Hardy-Type Inequalities on Time Scales with Applications
    Saker, S. H.
    Mahmoud, R. R.
    Peterson, A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (02) : 585 - 606
  • [33] On Hardy-type inequalities
    Edmunds, DE
    Hurri, R
    MATHEMATISCHE NACHRICHTEN, 1998, 194 : 23 - 33
  • [34] Hardy-type inequalities
    Davila, J
    Dupaigne, L
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2004, 6 (03) : 335 - 365
  • [35] A Higher-Order Hardy-Type Inequality in Anisotropic Sobolev Spaces
    Secchi, Paolo
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 2012
  • [36] A Hardy-type inequality and some spectral characterizations for the Dirac–Coulomb operator
    Biagio Cassano
    Fabio Pizzichillo
    Luis Vega
    Revista Matemática Complutense, 2020, 33 : 1 - 18
  • [37] A weighted anisotropic Sobolev type inequality and its applications to Hardy inequalities
    di Blasio, Giuseppina
    Pisante, Giovanni
    Psaradakis, Georgios
    MATHEMATISCHE ANNALEN, 2021, 379 (3-4) : 1343 - 1362
  • [38] A weighted anisotropic Sobolev type inequality and its applications to Hardy inequalities
    Giuseppina di Blasio
    Giovanni Pisante
    Georgios Psaradakis
    Mathematische Annalen, 2021, 379 : 1343 - 1362
  • [39] Some characterizations of dynamic weighted Hardy-type inequalities with applications
    Saker, S. H.
    Mahmoud, R. R.
    Abdo, K. R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (01)
  • [40] On Hardy-type integral inequalities
    冷拓
    冯勇
    AppliedMathematicsandMechanics(EnglishEdition), 2013, 34 (10) : 1297 - 1304