Objective Bayesian analysis of spatial data with uncertain nugget and range parameters

被引:21
|
作者
Kazianka, Hannes [1 ]
Pilz, Juergen [2 ]
机构
[1] Vienna Univ Technol, A-1040 Vienna, Austria
[2] Univ Klagenfurt, Dept Stat, A-9020 Klagenfurt, Austria
关键词
frequentist properties; Gaussian process; Jeffreys prior; nugget effect; posterior propriety; reference prior;
D O I
10.1002/cjs.11132
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors develop default priors for the Gaussian random field model that includes a nugget parameter accounting for the effects of microscale variations and measurement errors. They present the independence Jeffreys prior, the Jeffreys-rule prior and a reference prior and study posterior propriety of these and related priors. They show that the uniform prior for the correlation parameters yields an improper posterior. In case of known regression and variance parameters, they derive the Jeffreys prior for the correlation parameters. They prove posterior propriety and obtain that the predictive distributions at ungauged locations have finite variance. Moreover, they show that the proposed priors have good frequentist properties, except for those based on the marginal Jeffreys-rule prior for the correlation parameters, and illustrate their approach by analyzing a dataset of zinc concentrations along the river Meuse. The Canadian Journal of Statistics 40: 304327; 2012 (c) 2012 Statistical Society of Canada
引用
收藏
页码:304 / 327
页数:24
相关论文
共 50 条
  • [41] Bayesian Objective Functions for Estimating Parameters in Nonlinear Stochastic Differential Equation Models with Limited Data
    Karimi, Hadiseh
    McAuley, Kimberley B.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (27) : 8946 - 8961
  • [42] The uncertain eigenvalues analysis of structures with uncertain parameters
    Guo, XD
    Xie, J
    Chen, SH
    ACTA MECHANICA SOLIDA SINICA, 2000, 13 (03) : 230 - 236
  • [43] THE UNCERTAIN EIGENVALUES ANALYSIS OF STRUCTURES WITH UNCERTAIN PARAMETERS
    Guo Xuedong Xie Jun Chen Suhuan (Department of Mechanics
    Acta Mechanica Solida Sinica, 2000, 13 (03) : 230 - 236
  • [44] Objective Bayesian analysis of an exponential regression model with constrained parameters applied to animal digestibility
    Cano, J. A.
    Salmeron, D.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (13-16) : 2463 - 2473
  • [45] Interval analysis for updating FEM parameters using uncertain experimental data
    Gabriele, S.
    Valente, C.
    Brancaleoni, F.
    Proceedings of ISMA 2004: International Conference on Noise and Vibration Engineering, Vols 1-8, 2005, : 3065 - 3077
  • [46] Uncertain programming models for multi-objective shortest path problem with uncertain parameters
    Saibal Majumder
    Mohuya B. Kar
    Samarjit Kar
    Tandra Pal
    Soft Computing, 2020, 24 : 8975 - 8996
  • [47] Uncertain programming models for multi-objective shortest path problem with uncertain parameters
    Majumder, Saibal
    Kar, Mohuya B.
    Kar, Samarjit
    Pal, Tandra
    SOFT COMPUTING, 2020, 24 (12) : 8975 - 8996
  • [48] Indexing metric uncertain data for range queries and range joins
    Lu Chen
    Yunjun Gao
    Aoxiao Zhong
    Christian S. Jensen
    Gang Chen
    Baihua Zheng
    The VLDB Journal, 2017, 26 : 585 - 610
  • [49] Indexing metric uncertain data for range queries and range joins
    Chen, Lu
    Gao, Yunjun
    Zhong, Aoxiao
    Jensen, Christian S.
    Chen, Gang
    Zheng, Baihua
    VLDB JOURNAL, 2017, 26 (04): : 585 - 610
  • [50] Correlation of Spatial and Temporal Parameters in GNSS Data Analysis
    Chen J.
    Zhou J.
    Yan Y.
    Chen Q.
    Wang B.
    1649, Editorial Board of Medical Journal of Wuhan University (42): : 1649 - 1657