Objective Bayesian analysis of spatial data with uncertain nugget and range parameters

被引:21
|
作者
Kazianka, Hannes [1 ]
Pilz, Juergen [2 ]
机构
[1] Vienna Univ Technol, A-1040 Vienna, Austria
[2] Univ Klagenfurt, Dept Stat, A-9020 Klagenfurt, Austria
关键词
frequentist properties; Gaussian process; Jeffreys prior; nugget effect; posterior propriety; reference prior;
D O I
10.1002/cjs.11132
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors develop default priors for the Gaussian random field model that includes a nugget parameter accounting for the effects of microscale variations and measurement errors. They present the independence Jeffreys prior, the Jeffreys-rule prior and a reference prior and study posterior propriety of these and related priors. They show that the uniform prior for the correlation parameters yields an improper posterior. In case of known regression and variance parameters, they derive the Jeffreys prior for the correlation parameters. They prove posterior propriety and obtain that the predictive distributions at ungauged locations have finite variance. Moreover, they show that the proposed priors have good frequentist properties, except for those based on the marginal Jeffreys-rule prior for the correlation parameters, and illustrate their approach by analyzing a dataset of zinc concentrations along the river Meuse. The Canadian Journal of Statistics 40: 304327; 2012 (c) 2012 Statistical Society of Canada
引用
收藏
页码:304 / 327
页数:24
相关论文
共 50 条
  • [21] Range Searching on Uncertain Data
    Agarwal, Pankaj K.
    Cheng, Siu-Wing
    Yi, Ke
    ACM TRANSACTIONS ON ALGORITHMS, 2012, 8 (04)
  • [22] Objective Bayesian meta-analysis for sparse discrete data
    Moreno, E.
    Vazquez-Polo, F. J.
    Negrin, M. A.
    STATISTICS IN MEDICINE, 2014, 33 (21) : 3676 - 3692
  • [23] Range Queries on Uncertain Data
    Li, Jian
    Wang, Haitao
    ALGORITHMS AND COMPUTATION, ISAAC 2014, 2014, 8889 : 326 - 337
  • [24] Range queries on uncertain data
    Li, Jian
    Wang, Haitao
    THEORETICAL COMPUTER SCIENCE, 2016, 609 : 32 - 48
  • [25] A novel Bayesian classification for uncertain data
    Qin, Biao
    Xia, Yuni
    Wang, Shan
    Du, Xiaoyong
    KNOWLEDGE-BASED SYSTEMS, 2011, 24 (08) : 1151 - 1158
  • [26] A BAYESIAN ANALYSIS OF DESIGN PARAMETERS IN SURVEY DATA COLLECTION
    Schouten, Barry
    Mushkudiani, Nino
    Shlomo, Natalie
    Durrant, Gabi
    Lundquist, Peter
    Wagner, James
    JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2018, 6 (04) : 431 - 464
  • [27] INTERPOLATION WITH UNCERTAIN SPATIAL COVARIANCES - A BAYESIAN ALTERNATIVE TO KRIGING
    LE, ND
    ZIDEK, JV
    JOURNAL OF MULTIVARIATE ANALYSIS, 1992, 43 (02) : 351 - 374
  • [28] Objective Bayesian Inference for Bilateral Data
    M'lan, Cyr Emile
    Chen, Ming-Hui
    BAYESIAN ANALYSIS, 2015, 10 (01): : 139 - 170
  • [29] Range search on multidimensional uncertain data
    Tao, Yufei
    Xiao, Xiaokui
    Cheng, Reynold
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2007, 32 (03):
  • [30] The Case for Objective Bayesian Analysis
    Berger, James
    BAYESIAN ANALYSIS, 2006, 1 (03): : 385 - 402