Insensitive loss functions;
Twin support vector machines;
Fuzzy membership;
Bregman divergences;
Data classification;
CLASSIFICATION;
IMPROVEMENTS;
CONVERGENCE;
D O I:
10.1007/s00521-018-3843-0
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Some versions of weighted (twin) support vector machines have been developed to handle the contaminated data. However, the weights of samples are generally obtained from the prior knowledge of data in advance. This article develops an adaptively weighted twin support vector machine via Bregman divergences. To better handle the contaminated data, we employ an insensitive loss function to control the fitting error of the samples in one class and introduce the weight (fuzzy membership) of each sample into the proposed model. The alternating optimization technique is utilized to solve the proposed model due to the characteristics of the model. The accelerated version of first-order methods is used to solve a quadratic programming problem, and the fuzzy membership of each sample is achieved analytically in the case of Bregman divergences. Experiments on some data sets have been conducted to show that our method gains better classification performance than previous methods, especially for the open set experiment.
机构:
Shenzhen Univ, Big Data Inst, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R ChinaShenzhen Univ, Big Data Inst, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
Rezvani, Salim
Wang, Xizhao
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Big Data Inst, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R ChinaShenzhen Univ, Big Data Inst, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
机构:
Shanghai Lixin Univ Accounting & Finance, Sch Informat Management, Shanghai 201209, Peoples R ChinaShanghai Lixin Univ Accounting & Finance, Sch Informat Management, Shanghai 201209, Peoples R China
Xu, Weixia
Huang, Dingjiang
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Data Sci & Engn, Shanghai 200062, Peoples R ChinaShanghai Lixin Univ Accounting & Finance, Sch Informat Management, Shanghai 201209, Peoples R China
Huang, Dingjiang
Zhou, Shuigeng
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R ChinaShanghai Lixin Univ Accounting & Finance, Sch Informat Management, Shanghai 201209, Peoples R China
机构:
Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R ChinaHarbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
Zuo, Wangmeng
Wang, Faqiang
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R ChinaHarbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
Wang, Faqiang
Zhang, David
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R ChinaHarbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
Zhang, David
Lin, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Key Lab Machine Intelligence & Adv Comp, Minist Educ, Guangzhou 510275, Guangdong, Peoples R ChinaHarbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
Lin, Liang
Huang, Yuchi
论文数: 0引用数: 0
h-index: 0
机构:
Educ Testing Serv, Div Res, Princeton, NJ 08541 USAHarbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
Huang, Yuchi
Meng, Deyu
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Fac Math & Stat, Inst Informat & Syst Sci, Xian 710049, Shaanxi, Peoples R ChinaHarbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
Meng, Deyu
Zhang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R ChinaHarbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China