Adaptively weighted learning for twin support vector machines via Bregman divergences

被引:1
|
作者
Liang, Zhizheng [1 ]
Zhang, Lei [1 ]
Liu, Jin [1 ]
Zhou, Yong [1 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 08期
关键词
Insensitive loss functions; Twin support vector machines; Fuzzy membership; Bregman divergences; Data classification; CLASSIFICATION; IMPROVEMENTS; CONVERGENCE;
D O I
10.1007/s00521-018-3843-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Some versions of weighted (twin) support vector machines have been developed to handle the contaminated data. However, the weights of samples are generally obtained from the prior knowledge of data in advance. This article develops an adaptively weighted twin support vector machine via Bregman divergences. To better handle the contaminated data, we employ an insensitive loss function to control the fitting error of the samples in one class and introduce the weight (fuzzy membership) of each sample into the proposed model. The alternating optimization technique is utilized to solve the proposed model due to the characteristics of the model. The accelerated version of first-order methods is used to solve a quadratic programming problem, and the fuzzy membership of each sample is achieved analytically in the case of Bregman divergences. Experiments on some data sets have been conducted to show that our method gains better classification performance than previous methods, especially for the open set experiment.
引用
收藏
页码:3323 / 3336
页数:14
相关论文
共 50 条
  • [31] Quantum speedup of twin support vector machines
    Ye, Zekun
    Li, Lvzhou
    Situ, Haozhen
    Wang, Yuyi
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (08)
  • [32] Locality preserving twin support vector machines
    Hua, Xiaopeng
    Ding, Shifei
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2014, 51 (03): : 590 - 597
  • [33] Multitask centroid twin support vector machines
    Xie, Xijiong
    Sun, Shiliang
    NEUROCOMPUTING, 2015, 149 : 1085 - 1091
  • [34] Comprehensive review on twin support vector machines
    Tanveer, M.
    Rajani, T.
    Rastogi, R.
    Shao, Y. H.
    Ganaie, M. A.
    ANNALS OF OPERATIONS RESEARCH, 2024, 339 (03) : 1223 - 1268
  • [35] Domain Adaptation with Twin Support Vector Machines
    Xijiong Xie
    Shiliang Sun
    Huahui Chen
    Jiangbo Qian
    Neural Processing Letters, 2018, 48 : 1213 - 1226
  • [36] Probabilistic outputs for twin support vector machines
    Shao, Yuan-Hai
    Deng, Nai-Yang
    Yang, Zhi-Min
    Chen, Wei-Jie
    Wang, Zhen
    KNOWLEDGE-BASED SYSTEMS, 2012, 33 : 145 - 151
  • [37] Universal consistency of twin support vector machines
    Weixia Xu
    Dingjiang Huang
    Shuigeng Zhou
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 1867 - 1877
  • [38] Quantum speedup of twin support vector machines
    Zekun Ye
    Lvzhou Li
    Haozhen Situ
    Yuyi Wang
    Science China Information Sciences, 2020, 63
  • [39] Domain Adaptation with Twin Support Vector Machines
    Xie, Xijiong
    Sun, Shiliang
    Chen, Huahui
    Qian, Jiangbo
    NEURAL PROCESSING LETTERS, 2018, 48 (02) : 1213 - 1226
  • [40] Polynomial Smooth Twin Support Vector Machines
    Ding, Shifei
    Huang, Huajuan
    Xu, Xinzheng
    Wang, Jian
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 2063 - 2071