Sparse tensor dimensionality reduction with application to clustering of functional connectivity

被引:1
|
作者
Frusque, Gaetan [1 ]
Jung, Julien [2 ,3 ]
Borgnat, Pierre [4 ]
Goncalves, Paulo [1 ]
机构
[1] Univ Lyon, UCB Lyon 1, INRIA, ENS Lyon,LIP,CNRS,UMR 5668, F-69342 Lyon, France
[2] CNRS, INSERM, Neuro Hosp, Funct Neurol & Epileptol Dept,HCL, Lyon, France
[3] CNRS, INSERM, Lyon Neurosc Res Cent, Lyon, France
[4] Univ Lyon, UCB Lyon 1, ENS Lyon, CNRS,Lab Phys, F-69342 Lyon, France
来源
WAVELETS AND SPARSITY XVIII | 2019年 / 11138卷
关键词
dynamic networks; graph decomposition; clustering; dimensionality reduction; sparsity; tensor decompositions; HOOI; functional connectivity; iEEG;
D O I
10.1117/12.2529595
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Functional connectivity (FC) is a graph-like data structure commonly used by neuroscientists to study the dynamic behaviour of the brain activity. However, these analyses rapidly become complex and time-consuming. In this work, we present complementary empirical results on two tensor decomposition previously proposed named modified High Order Orthogonal Iteration (mHOOI) and High Order sparse Singular Value Decomposition (HOsSVD). These decompositions associated to k-means were shown to be useful for the study of multi trial functional connectivity dataset.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Efficient Dimensionality Reduction for Sparse Binary Data
    Pratap, Rameshwar
    Kulkarni, Raghav
    Sohony, Ishan
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 152 - 157
  • [42] Dimensionality reduction through tensor factorization : application to ab initio nuclear physics calculations
    Frosini, Mikael
    Duguet, Thomas
    Tamagno, Pierre
    Zurek, Lars
    JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, SNA + MC 2024, 2024, 302
  • [43] A Sparse-Grid-Based Out-of-Sample Extension for Dimensionality Reduction and Clustering with Laplacian Eigenmaps
    Peherstorfer, Benjamin
    Pflueger, Dirk
    Bungartz, Hans-Joachim
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 112 - 121
  • [44] Graph Connectivity in Noisy Sparse Subspace Clustering
    Wang, Yining
    Wang, Yu-Xiang
    Singh, Aarti
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 538 - 546
  • [45] Sparse graphs with smoothness constraints: Application to dimensionality reduction and semi-supervised classification
    Dornaika, E.
    Weng, L.
    PATTERN RECOGNITION, 2019, 95 : 285 - 295
  • [46] Dimensionality Reduction Using Sparse Locality Preserving Projections and Its Application in Face Recognition
    Zhang, Jianbo
    Wang, Jinkuan
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9011 - 9015
  • [47] Sparse clustering of functional data
    Floriello, Davide
    Vitelli, Valeria
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 : 1 - 18
  • [48] NONLINEAR DIMENSION REDUCTION FOR FUNCTIONAL DATA WITH APPLICATION TO CLUSTERING
    Tan, Ruoxu
    Zang, Yiming
    Yin, Guosheng
    STATISTICA SINICA, 2024, 34 (03) : 1391 - 1412
  • [49] Dimensionality reduction via genetic value clustering
    Topchy, A
    Punch, W
    GENETIC AND EVOLUTIONARY COMPUTATION - GECCO 2003, PT II, PROCEEDINGS, 2003, 2724 : 1431 - 1443
  • [50] Patent Document Clustering Using Dimensionality Reduction
    Girthana, K.
    Swamynathan, S.
    PROGRESS IN ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, VOL 2, 2018, 564 : 167 - 176