Sparse tensor dimensionality reduction with application to clustering of functional connectivity

被引:1
|
作者
Frusque, Gaetan [1 ]
Jung, Julien [2 ,3 ]
Borgnat, Pierre [4 ]
Goncalves, Paulo [1 ]
机构
[1] Univ Lyon, UCB Lyon 1, INRIA, ENS Lyon,LIP,CNRS,UMR 5668, F-69342 Lyon, France
[2] CNRS, INSERM, Neuro Hosp, Funct Neurol & Epileptol Dept,HCL, Lyon, France
[3] CNRS, INSERM, Lyon Neurosc Res Cent, Lyon, France
[4] Univ Lyon, UCB Lyon 1, ENS Lyon, CNRS,Lab Phys, F-69342 Lyon, France
来源
WAVELETS AND SPARSITY XVIII | 2019年 / 11138卷
关键词
dynamic networks; graph decomposition; clustering; dimensionality reduction; sparsity; tensor decompositions; HOOI; functional connectivity; iEEG;
D O I
10.1117/12.2529595
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Functional connectivity (FC) is a graph-like data structure commonly used by neuroscientists to study the dynamic behaviour of the brain activity. However, these analyses rapidly become complex and time-consuming. In this work, we present complementary empirical results on two tensor decomposition previously proposed named modified High Order Orthogonal Iteration (mHOOI) and High Order sparse Singular Value Decomposition (HOsSVD). These decompositions associated to k-means were shown to be useful for the study of multi trial functional connectivity dataset.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Dimensionality Reduction by Using Sparse Reconstruction Embedding
    Huang, Shaoli
    Cai, Cheng
    Zhang, Yang
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING-PCM 2010, PT II, 2010, 6298 : 167 - 178
  • [32] Approximate Orthogonal Sparse Embedding for Dimensionality Reduction
    Lai, Zhihui
    Wong, Wai Keung
    Xu, Yong
    Yang, Jian
    Zhang, David
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (04) : 723 - 735
  • [33] Stable sparse subspace embedding for dimensionality reduction
    Chen, Li
    Zhou, Shuizheng
    Ma, Jiajun
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [34] Robust jointly sparse embedding for dimensionality reduction
    Lai, Zhihui
    Chen, Yudong
    Mo, Dongmei
    Wen, Jiajun
    Kong, Heng
    NEUROCOMPUTING, 2018, 314 : 30 - 38
  • [35] Dimensionality reduction via kernel sparse representation
    Zhisong Pan
    Zhantao Deng
    Yibing Wang
    Yanyan Zhang
    Frontiers of Computer Science, 2014, 8 : 807 - 815
  • [36] Group sparsity in dimensionality reduction of sparse representation
    Liu, Yang
    Li, Xueming
    Liu, Chenyu
    Tang, Yufang
    2014 INTERNATIONAL SYMPOSIUM ON WIRELESS PERSONAL MULTIMEDIA COMMUNICATIONS (WPMC), 2014, : 541 - 546
  • [37] An Explicit Sparse Mapping for Nonlinear Dimensionality Reduction
    Xia, Ying
    Lu, Qiang
    Feng, JiangFan
    Bae, Hae-Young
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2014, 2014, 8818 : 149 - 157
  • [38] Dimensionality reduction via kernel sparse representation
    Pan, Zhisong
    Deng, Zhantao
    Wang, Yibing
    Zhang, Yanyan
    FRONTIERS OF COMPUTER SCIENCE, 2014, 8 (05) : 807 - 815
  • [39] Neural correlates of sparse coding and dimensionality reduction
    Beyeler, Michael
    Rounds, Emily L.
    Carlson, Kristofor D.
    Dutt, Nikil
    Krichmar, Jeffrey L.
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (06)
  • [40] Sparse Dimensionality Reduction Based on Compressed Sensing
    Tang, Yufang
    Li, Xueming
    Liu, Yan
    Wang, Jizhe
    Xu, Yan
    2014 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2014, : 3373 - 3378