Sparse matrix approximations for multigrid methods

被引:5
|
作者
Bolten, Matthias [1 ]
Huckle, Thomas K. [2 ]
Kravvaritis, Christos D. [3 ]
机构
[1] Univ Kassel, Inst Math, D-34133 Kassel, Germany
[2] Tech Univ Munich, Dept Informat, Boltzmannstr 3, D-85748 Munich, Germany
[3] Univ Athens, Dept Math, Athens 15784, Greece
关键词
Multigrid; Toeplitz matrices; Generating functions; Sparse matrix approximations; COMPACT FOURIER-ANALYSIS; MULTILEVEL;
D O I
10.1016/j.laa.2015.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the application of sparse matrix approximations for two-grid and V-cycle multigrid methods. Sparse approximate inverses can be used as smoothers, further the Galerkin coarse matrix can be sparsified by sparse approximation techniques. Also the projection can be defined by combining sparse approximation with side conditions related to high frequency components. Numerical results are given, which demonstrate the efficiency and accuracy of the proposed strategies. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:58 / 76
页数:19
相关论文
共 50 条
  • [41] REGRESSION WITH SPARSE APPROXIMATIONS OF DATA
    Noorzad, Pardis
    Sturm, Bob L.
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 674 - 678
  • [42] Cascadic multigrid methods
    Bornemann, FA
    Deuflhard, P
    DOMAIN DECOMPOSITION METHODS IN SCIENCES AND ENGINEERING, 1997, : 205 - 212
  • [43] Iterative Thresholding for Sparse Approximations
    Blumensath, Thomas
    Davies, Mike E.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) : 629 - 654
  • [44] Computing sparse approximations deterministically
    Hofmeister, T
    Lefmann, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 240 : 9 - 19
  • [45] Sparse Approximations for Quaternionic Signals
    Quentin Barthélemy
    Anthony Larue
    Jérôme I. Mars
    Advances in Applied Clifford Algebras, 2014, 24 : 383 - 402
  • [46] Iterative Thresholding for Sparse Approximations
    Thomas Blumensath
    Mike E. Davies
    Journal of Fourier Analysis and Applications, 2008, 14 : 629 - 654
  • [47] INVERSION OF THE FERMIONIC MATRIX AND MULTIGRID
    BARCZYK, T
    WIT, R
    ACTA PHYSICA POLONICA B, 1991, 22 (07): : 623 - 629
  • [48] Multigrid for discrete differential forms on sparse grids
    Gradinaru, V
    Hiptmair, R
    COMPUTING, 2003, 71 (01) : 17 - 42
  • [49] Multigrid for Discrete Differential Forms on Sparse Grids
    V. Gradinaru
    R. Hiptmair
    Computing, 2003, 71 : 17 - 42
  • [50] Sparse Bayesian Methods for Low-Rank Matrix Estimation
    Babacan, S. Derin
    Luessi, Martin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) : 3964 - 3977