Sparse matrix approximations for multigrid methods

被引:5
|
作者
Bolten, Matthias [1 ]
Huckle, Thomas K. [2 ]
Kravvaritis, Christos D. [3 ]
机构
[1] Univ Kassel, Inst Math, D-34133 Kassel, Germany
[2] Tech Univ Munich, Dept Informat, Boltzmannstr 3, D-85748 Munich, Germany
[3] Univ Athens, Dept Math, Athens 15784, Greece
关键词
Multigrid; Toeplitz matrices; Generating functions; Sparse matrix approximations; COMPACT FOURIER-ANALYSIS; MULTILEVEL;
D O I
10.1016/j.laa.2015.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the application of sparse matrix approximations for two-grid and V-cycle multigrid methods. Sparse approximate inverses can be used as smoothers, further the Galerkin coarse matrix can be sparsified by sparse approximation techniques. Also the projection can be defined by combining sparse approximation with side conditions related to high frequency components. Numerical results are given, which demonstrate the efficiency and accuracy of the proposed strategies. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:58 / 76
页数:19
相关论文
共 50 条
  • [31] Efficient ordering algorithms for sparse matrix/vector methods
    Gooi, HB
    Wang, YQ
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1998, 20 (01) : 53 - 59
  • [32] Efficient ordering algorithms for sparse matrix/vector methods
    Gooi, H.B.
    Wang, Y.Q.
    International Journal of Electrical Power and Energy System, 1998, 20 (01): : 53 - 59
  • [33] MATRIX-FREE MONOLITHIC MULTIGRID METHODS FOR STOKES AND GENERALIZED STOKES PROBLEMS
    Jodlbauer, Daniel
    Langer, Ulrich
    Wick, Thomas
    Zulehner, Walter
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (03): : A1599 - A1627
  • [34] Algebraic Multigrid Methods Based on Generic Approximate Banded Inverse Matrix Techniques
    Gravvanis, George A.
    Filelis-Papadopoulos, Christos K.
    Matskanidis, Paschalis I.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 100 (04): : 323 - 345
  • [35] Convergence analysis of geometrical multigrid methods for solving data-sparse boundary element equations
    Langer, Ulrich
    Pusch, David
    COMPUTING AND VISUALIZATION IN SCIENCE, 2008, 11 (03) : 181 - 189
  • [36] Multigrid methods 2013
    Dendy, J. E., Jr.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (02) : 175 - 176
  • [37] Algebraic multigrid methods
    Xu, Jinchao
    Zikatanov, Ludmil
    ACTA NUMERICA, 2017, 26 : 591 - 721
  • [38] Asynchronous Multigrid Methods
    Wolfson-Pou, Jordi
    Chow, Edmond
    2019 IEEE 33RD INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2019), 2019, : 101 - 110
  • [39] Multigrid Methods 2017
    Dendy, Joel E., Jr.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (03)
  • [40] Sparse Approximations for Quaternionic Signals
    Barthelemy, Quentin
    Larue, Anthony
    Mars, Jerome I.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (02) : 383 - 402