Sparse matrix approximations for multigrid methods

被引:5
|
作者
Bolten, Matthias [1 ]
Huckle, Thomas K. [2 ]
Kravvaritis, Christos D. [3 ]
机构
[1] Univ Kassel, Inst Math, D-34133 Kassel, Germany
[2] Tech Univ Munich, Dept Informat, Boltzmannstr 3, D-85748 Munich, Germany
[3] Univ Athens, Dept Math, Athens 15784, Greece
关键词
Multigrid; Toeplitz matrices; Generating functions; Sparse matrix approximations; COMPACT FOURIER-ANALYSIS; MULTILEVEL;
D O I
10.1016/j.laa.2015.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the application of sparse matrix approximations for two-grid and V-cycle multigrid methods. Sparse approximate inverses can be used as smoothers, further the Galerkin coarse matrix can be sparsified by sparse approximation techniques. Also the projection can be defined by combining sparse approximation with side conditions related to high frequency components. Numerical results are given, which demonstrate the efficiency and accuracy of the proposed strategies. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:58 / 76
页数:19
相关论文
共 50 条
  • [1] A STREAMING APPROACH FOR SPARSE MATRIX PRODUCTS AND ITS APPLICATION IN GALERKIN MULTIGRID METHODS
    Georgii, Joachim
    Westermann, Ruediger
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2010, 37 : 263 - 275
  • [2] Optimization of Sparse Matrix Computation for Algebraic Multigrid on GPUs
    Wang, Yizhuo
    Chang, Fangli
    Wei, Bingxin
    Gao, Jianhua
    Ji, Weixing
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2024, 21 (03)
  • [3] Sparse matrix solvers on the GPU:: Conjugate gradients and multigrid
    Bolz, J
    Farmer, I
    Grinspun, E
    Schröder, P
    ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03): : 917 - 924
  • [4] Sparse Approximations with Interior Point Methods
    De Simone, Valentina
    di Serafino, Daniela
    Gondzio, Jacek
    Pougkakiotis, Spyridon
    Viola, Marco
    SIAM REVIEW, 2022, 64 (04) : 954 - 988
  • [5] HYBRID SPARSE MATRIX METHODS
    DEMBART, B
    ERISMAN, AM
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1973, CT20 (06): : 641 - 649
  • [6] REDUCING COMMUNICATION COSTS FOR SPARSE MATRIX MULTIPLICATION WITHIN ALGEBRAIC MULTIGRID
    Rallard, Grey
    Siefer, Christopher
    Hu, Jonathan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (03): : C203 - C231
  • [7] Sparse approximations of matrix functions via numerical integration of ODEs
    Chehab, Jean-Paul
    BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2016, 4 (02): : 95 - 132
  • [8] Optimal Multigrid Methods with New Transfer Operators Based on Finite Difference Approximations
    Zhiyong Liu
    Acta Applicandae Mathematicae, 2010, 111 : 83 - 91
  • [9] Optimal Multigrid Methods with New Transfer Operators Based on Finite Difference Approximations
    Liu, Zhiyong
    ACTA APPLICANDAE MATHEMATICAE, 2010, 111 (01) : 83 - 91
  • [10] SPARSE-MATRIX METHODS IN OPTIMIZATION
    GILL, PE
    MURRAY, W
    SAUNDERS, MA
    WRIGHT, MH
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (03): : 562 - 589