Experimental investigation of a hybrid photovoltaic evaporative cooling (PV/EC) system performance under arid conditions

被引:30
|
作者
Mahmood, Deyaa M. N. [1 ]
Aljubury, Issam M. Ali [1 ]
机构
[1] Univ Baghdad, Mech Engn Dept, Coll Engn, Baghdad, Iraq
基金
日本学术振兴会;
关键词
PV panel; Evaporative cooling; Solar; Efficiency; WATER-FLOW RATE; EFFICIENCY; ENERGY;
D O I
10.1016/j.rineng.2022.100618
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An innovative hybrid photovoltaic evaporative cooling (PV/EC) system has been experimentally investigated in order to improve its efficiency by cooling the PV panel and simultaneously providing cold humid supplied air. PV/EC system integrates a PV panel and a traditional roof-mounted evaporative cooling system. The innovative PV/EC combines a PV panel and the evaporative cooling system beneath the PV panel as one structure. This system eliminates a lot of space that would otherwise be needed by a cooling system driven by PV panels. Also, this new design structure reduces the solar radiation incoming to the building roof in summer. The proposed evaporative system tested a cellulose cooling pad of three thicknesses (50, 100, and 150 mm) with three water flow rates (1, 2, and 3 LPM), while the air velocity ranged between (2-3 m/s). The results, compared to a normal PV panel without cooling, showed an improvement in both the electric and thermal performance of PV/EC systems. The PV panel efficiency improved by 7.4%, 10.5%, and 11.2% for pads #1, #2, and #3 respectively. The average temperature reduction of pad #1 reached (15 degrees C), and was about (20 degrees C) for pads #2 and #3. The supplied air temperature difference was (5.5 degrees C, 9.2 degrees C, and 13.9 degrees C) for three pads respectively. The best supplied air dry-bulb temperature was 24.7 degrees C and 71% relative humidity for pad #3.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Experimental investigation on performance of fabrics for indirect evaporative cooling applications
    Xu, Peng
    Ma, Xiaoli
    Zhao, Xudong
    Fancey, Kevin S.
    BUILDING AND ENVIRONMENT, 2016, 110 : 104 - 114
  • [22] Experimental investigation of a passive cooling system for photovoltaic modules efficiency improvement in hot and arid regions
    Dida, Mustapha
    Boughali, Slimane
    Bechki, Djamel
    Bouguettaia, Hamza
    ENERGY CONVERSION AND MANAGEMENT, 2021, 243
  • [23] Experimental investigation of a hybrid configuration of solar thermal collectors and desiccant indirect evaporative cooling system
    Ditta, Allah
    Tabish, Asif Nadeem
    Mujtaba, M. A.
    Amjad, Muhammad
    Yusuf, Abdulfatah Abdu
    Chaudhary, Ghulam Qadar
    Razzaq, Luqman
    Abdelrahman, Anas
    Kalam, M. A.
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [24] Experimental Investigation of Using Waste Materials as Cooling Pads for Evaporative Cooling System
    Almaneea, Abdulmajeed
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025,
  • [26] Performance comparison investigation on solar photovoltaic-thermoelectric generation and solar photovoltaic-thermoelectric cooling hybrid systems under different conditions
    Wu, Shuang-Ying
    Zhang, Yi-Chen
    Xiao, Lan
    Shen, Zu-Guo
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2018, 37 (06) : 533 - 548
  • [27] Experimental investigation on cooling the photovoltaic panel using hybrid nanofluids
    Sathyamurthy, Ravishankar
    Kabeel, A. E.
    Chamkha, Ali
    Karthick, Alagar
    Muthu Manokar, A.
    Sumithra, M. G.
    APPLIED NANOSCIENCE, 2021, 11 (02) : 363 - 374
  • [28] Experimental investigation on cooling the photovoltaic panel using hybrid nanofluids
    Ravishankar Sathyamurthy
    A. E. Kabeel
    Ali Chamkha
    Alagar Karthick
    A. Muthu Manokar
    M. G. Sumithra
    Applied Nanoscience, 2021, 11 : 363 - 374
  • [29] Experimental investigation of the performance of a hybrid photovoltaic/thermal solar system using aluminium cooling plate with straight and helical channels
    Salem, M. R.
    Ali, R. K.
    Elshazly, K. M.
    SOLAR ENERGY, 2017, 157 : 147 - 156
  • [30] Performance investigation of a concentrated photovoltaic-thermoelectric hybrid system for electricity and cooling production
    Lu, Zhen
    Huang, Yuewu
    Zhao, Yonggang
    APPLIED THERMAL ENGINEERING, 2023, 231