Convergence of locally and globally interacting Markov chains

被引:13
|
作者
Föllmer, H [1 ]
Horst, U [1 ]
机构
[1] Humboldt Univ, Inst Math, Bereich Stochast, D-10099 Berlin, Germany
关键词
Markov chains on infinite product spaces; convergence of Markov chains; contraction techniques; Gibbs measures;
D O I
10.1016/S0304-4149(01)00110-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the long run behaviour of interactive Markov chains on infinite product spaces. In view of microstructure models of financial markets, the interaction has both a local and a global component. The convergence of such Markov chains is analyzed on the microscopic level and on the macroscopic level of empirical fields. We give sufficient conditions for convergence on the macroscopic level. Using a perturbation of the Dobrushin-Vasserstein contraction technique we show that macroscopic convergence implies weak convergence of the underlying Markov chain. This extends the basic convergence theorem of Vasserstein for locally interacting Markov chains to the case where an additional global component appears in the interaction. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:99 / 121
页数:23
相关论文
共 50 条
  • [31] Sensitivity and convergence of uniformly ergodic Markov chains
    Mitrophanov, AY
    JOURNAL OF APPLIED PROBABILITY, 2005, 42 (04) : 1003 - 1014
  • [32] Convergence of Markov chains in the relative supremum norm
    Holden, L
    JOURNAL OF APPLIED PROBABILITY, 2000, 37 (04) : 1074 - 1083
  • [33] Singularly perturbed Markov chains: Convergence and aggregation
    Yin, G
    Zhang, Q
    Badowski, G
    JOURNAL OF MULTIVARIATE ANALYSIS, 2000, 72 (02) : 208 - 229
  • [34] QUANTITATIVE CONVERGENCE RATES FOR SUBGEOMETRIC MARKOV CHAINS
    Andrieu, Christophe
    Fort, Gersende
    Vihola, Matti
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (02) : 391 - 404
  • [35] Convergence rates of Markov chains on spaces of partitions
    Crane, Harry
    Lalley, Steven P.
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18
  • [36] A Note on the Convergence of Probability Functions of Markov Chains
    Baczynski, J.
    Fragoso, M. D.
    MARKOV PROCESSES AND RELATED FIELDS, 2013, 19 (01) : 141 - 148
  • [38] MODELING ELECTROCARDIOGRAMS USING INTERACTING MARKOV-CHAINS
    DOERSCHUK, PC
    TENNEY, RR
    WILLSKY, AS
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1990, 21 (02) : 257 - 283
  • [39] Ricci curvature bounds for weakly interacting Markov chains
    Erbar, Matthias
    Henderson, Christopher
    Menz, Georg
    Tetali, Prasad
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [40] A central limit theorem for adaptive and interacting Markov chains
    Fort, G.
    Moulines, E.
    Priouret, P.
    Vandekerkhove, P.
    BERNOULLI, 2014, 20 (02) : 457 - 485