Convergence of locally and globally interacting Markov chains

被引:13
|
作者
Föllmer, H [1 ]
Horst, U [1 ]
机构
[1] Humboldt Univ, Inst Math, Bereich Stochast, D-10099 Berlin, Germany
关键词
Markov chains on infinite product spaces; convergence of Markov chains; contraction techniques; Gibbs measures;
D O I
10.1016/S0304-4149(01)00110-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the long run behaviour of interactive Markov chains on infinite product spaces. In view of microstructure models of financial markets, the interaction has both a local and a global component. The convergence of such Markov chains is analyzed on the microscopic level and on the macroscopic level of empirical fields. We give sufficient conditions for convergence on the macroscopic level. Using a perturbation of the Dobrushin-Vasserstein contraction technique we show that macroscopic convergence implies weak convergence of the underlying Markov chain. This extends the basic convergence theorem of Vasserstein for locally interacting Markov chains to the case where an additional global component appears in the interaction. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:99 / 121
页数:23
相关论文
共 50 条
  • [21] Stochastic seismic tomography by interacting Markov chains
    Bottero, Alexis
    Gesret, Alexandrine
    Romary, Thomas
    Noble, Mark
    Maisons, Christophe
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 207 (01) : 374 - 392
  • [22] WEAK CONVERGENCE OF INTERPOLATED MARKOV CHAINS TO A DIFFUSION
    KUSHNER, HJ
    ANNALS OF PROBABILITY, 1974, 2 (01): : 40 - 50
  • [24] On the convergence rate of quasi lumpable Markov chains
    Farago, Andras
    FORMAL METHODS AND STOCHASTIC MODELS FOR PERFORMANCE EVALUATION, 2006, 4054 : 138 - 147
  • [25] PATH CONVERGENCE OF MARKOV CHAINS ON LARGE GRAPHS
    Athreya, Siva
    Pal, Soumik
    Somani, Raghav
    Tripathi, Raghavendra
    arXiv, 2023,
  • [26] On improved bounds and conditions for the convergence of Markov chains
    Veretennikov, A. Yu.
    Veretennikova, M. A.
    IZVESTIYA MATHEMATICS, 2022, 86 (01) : 92 - 125
  • [27] Noise can speed convergence in Markov chains
    Franzke, Brandon
    Kosko, Bart
    PHYSICAL REVIEW E, 2011, 84 (04):
  • [28] CONVERGENCE-RATES FOR MARKOV-CHAINS
    ROSENTHAL, JS
    SIAM REVIEW, 1995, 37 (03) : 387 - 405
  • [29] Explicit bounds for geometric convergence of Markov chains
    Kolassa, JE
    JOURNAL OF APPLIED PROBABILITY, 2000, 37 (03) : 642 - 651
  • [30] The use of Markov chains in the social convergence analysis
    Kuc, Marta
    9TH PROFESSOR ALEKSANDER ZELIAS INTERNATIONAL CONFERENCE ON MODELLING AND FORECASTING OF SOCIO-ECONOMIC PHENOMENA, 2015, : 118 - 126