NONLINEAR CHOQUARD EQUATIONS ON HYPERBOLIC SPACE

被引:3
|
作者
He, Haiyang [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
关键词
nonlinear Choquard equation; hyperbolic space; existence solutions; Hardy Littlewood Sobolev inequality; GROUND-STATES; EXISTENCE;
D O I
10.7494/OpMath.2022.42.5.691
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, our purpose is to prove the existence results for the following nonlinear Choquard equation -Delta(B)Nu = integral(BN)vertical bar u(y)(p)/vertical bar 2sinh rho(T-y(x))/2 vertical bar mu dV(y) . vertical bar u vertical bar(P-2)u + lambda u on the hyperbolic space B-N, where Delta(BN) denotes the Laplace-Beltrami operator on B-N, sinh rho(T-y(x))/2 = vertical bar T-y(x)vertical bar/root 1 - vertical bar T-y(x)vertical bar(2) = vertical bar x - y vertical bar/root(1 - vertical bar x vertical bar(2))(1 - vertical bar y vertical bar(2)), lambda is a real parameter, 0 < mu < N, 1 < p <= 2(mu)*, N >= 3 and 2(mu)* := 2N-mu/N-2 is the critical exponent in the sense of the Hardy Littlewood Sobolev inequality.
引用
收藏
页码:691 / 708
页数:18
相关论文
共 50 条