On the computation of the Turaev-Viro module of a knot

被引:2
|
作者
Abchir, H
Blanchet, C
机构
[1] Univ Hassan II, Ecole Super Technol, Casablanca 20100, Morocco
[2] Univ Nantes, UMR 6629, F-44322 Nantes 3, France
关键词
knot; abelian cover; 3-manifold; TQFT;
D O I
10.1142/S0218216598000437
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be the manifold obtained by 0-framed surgery along a knot K in the 3-sphere. A Topological Quantum Field Theory assigns to a fundamental domain of the universal abelian cover of M an operator, whose non-nilpotent part is the Turaev-Viro module of K. In this paper, using surgery formulas, we give a matrix presentation for the Turaev-Viro module of any knot Ii, in the case of the (V-p, Z(p)) TQFT of Blanchet, Habegger, Masbaum and Vogel. We do the computation for a family of knots in the special case p = 8, and note the relation with the fibering question.
引用
收藏
页码:843 / 856
页数:14
相关论文
共 50 条
  • [31] Possible Universal Quantum Algorithms for Generalized Turaev-Viro invariants
    Velez, Mario
    Ospina, Juan
    QUANTUM INFORMATION AND COMPUTATION IX, 2011, 8057
  • [32] 3-DIMENSIONAL GRAVITY FROM THE TURAEV-VIRO INVARIANT
    MIZOGUCHI, S
    TADA, T
    PHYSICAL REVIEW LETTERS, 1992, 68 (12) : 1795 - 1798
  • [33] 3-DIMENSIONAL GRAVITY AND THE TURAEV-VIRO INVARIANT
    MIZOGUCHI, S
    TADA, T
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1992, (110): : 207 - 227
  • [34] Recent Progresses on the Volume Conjectures for Reshetikhin-Turaev and Turaev-Viro Invariants
    Yang, Tian
    ACTA MATHEMATICA VIETNAMICA, 2021, 46 (02) : 389 - 398
  • [35] A reciprocity formula from abelian BF and Turaev-Viro theories
    Mathieu, P.
    Thuillier, F.
    NUCLEAR PHYSICS B, 2016, 912 : 327 - 353
  • [36] GROMOV NORM AND TURAEV-VIRO INVARIANTS OF 3-MANIFOLDS
    Detcherry, Renaud
    Kalfagianni, Efstratia
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (06): : 1363 - 1391
  • [37] On Colored Turaev-Viro Invariants for Links in Arbitrary 3-Manifolds
    Pervova, Ekaterina
    Petronio, Carlo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (14) : 2547 - 2587
  • [38] The Turaev-Viro invariant for 3-manifolds is a sum of three invariants
    Sokolov, MV
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1996, 39 (04): : 468 - 475
  • [39] Modified Turaev-Viro invariants from quantum sl(2|1)
    Anghel, Cristina Ana-Maria
    Geer, Nathan
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (04)
  • [40] Quantum Error Correction Thresholds for the Universal Fibonacci Turaev-Viro Code
    Schotte, Alexis
    Zhu, Guanyu
    Burgelman, Lander
    Verstraete, Frank
    PHYSICAL REVIEW X, 2022, 12 (02)