3-DIMENSIONAL GRAVITY FROM THE TURAEV-VIRO INVARIANT

被引:67
|
作者
MIZOGUCHI, S [1 ]
TADA, T [1 ]
机构
[1] KYOTO UNIV, UJI RES CTR, YUKAWA INST THEORET PHYS, UJI, KYOTO 611, JAPAN
关键词
D O I
10.1103/PhysRevLett.68.1795
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the q-deformed su(2) spin network as a three-dimensional quantum gravity model. We show that in the semiclassical continuum limit the Turaev-Viro invariant obtained recently defines a naturally regularized path integral a la Ponzano and Regge, in which a contribution from the cosmological term is effectively included. The regularization-dependent cosmological constant is found to be 4-pi2/k2+O(k-4), where q2k = 1. We also discuss the relation to the Euclidean Chern-Simons-Witten gravity in three dimensions.
引用
收藏
页码:1795 / 1798
页数:4
相关论文
共 50 条
  • [1] 3-DIMENSIONAL GRAVITY AND THE TURAEV-VIRO INVARIANT
    MIZOGUCHI, S
    TADA, T
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1992, (110): : 207 - 227
  • [2] THE TURAEV-VIRO STATE SUM MODEL AND 3-DIMENSIONAL QUANTUM-GRAVITY
    ARCHER, F
    WILLIAMS, RM
    PHYSICS LETTERS B, 1991, 273 (04) : 438 - 444
  • [3] On a simple invariant of Turaev-Viro type
    S. V. Matveev
    M. V. Sokolov
    Journal of Mathematical Sciences, 1999, 94 (2) : 1226 - 1229
  • [4] Turaev-Viro invariant and 3nj symbols
    Carbone, G
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 3068 - 3085
  • [5] Abelian BF theory and Turaev-Viro invariant
    Mathieu, P.
    Thuillier, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
  • [6] The Turaev-Viro invariant for 3-manifolds is a sum of three invariants
    Sokolov, MV
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1996, 39 (04): : 468 - 475
  • [7] Holonomy Observables for the Turaev-Viro Model of Quantum Gravity
    Silveira, V. M. G.
    Hadjimichef, D.
    Luna, E. G. S.
    Vasconcellos, Cesar A. Zen
    ASTRONOMISCHE NACHRICHTEN, 2025,
  • [8] Periods, the meromorphic 3D-index and the Turaev-Viro invariant
    Garoufalidis, Stavros
    Wheeler, Campbell
    arXiv, 2022,
  • [9] IDEAL TURAEV-VIRO INVARIANTS
    King, Simon A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2006, 3 : 62 - 66
  • [10] Ideal Turaev-Viro invariants
    King, Simon A.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) : 1141 - 1156