The variety of Lie bialgebras

被引:0
|
作者
Ciccoli, N [1 ]
Guerra, L [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat, I-06123 Perugia, Italy
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a Lie bialgebra cohomology as the total cohomology of a double complex constructed from a Lie algebra and its dual, we show that its 2-cocycles classify Lie bialgebra formal deformations and we prove the usual cohomological condition (i. e. H-2 = 0) for formal rigidity. Lastly we describe the results of explicit computations in low-dimensional cases.
引用
收藏
页码:579 / 590
页数:12
相关论文
共 50 条
  • [31] Lie 2-Bialgebras
    Chengming Bai
    Yunhe Sheng
    Chenchang Zhu
    Communications in Mathematical Physics, 2013, 320 : 149 - 172
  • [32] On Quantizable Odd Lie Bialgebras
    Khoroshkin, Anton
    Merkulov, Sergei
    Willwacher, Thomas
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (09) : 1199 - 1215
  • [33] Factorizable Lie Bialgebras, Quadratic Rota-Baxter Lie Algebras and Rota-Baxter Lie Bialgebras
    Lang, Honglei
    Sheng, Yunhe
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 397 (02) : 763 - 791
  • [34] On simple real Lie bialgebras
    Andruskiewitsch, N
    Jancsa, P
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (03) : 139 - 158
  • [35] On the associative analog of Lie bialgebras
    Aguiar, M
    JOURNAL OF ALGEBRA, 2001, 244 (02) : 492 - 532
  • [36] Quantization of Lie bialgebras revisited
    Severa, Pavol
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1563 - 1581
  • [37] Extending Structures for Lie Bialgebras
    Hong, Yanyong
    JOURNAL OF LIE THEORY, 2023, 33 (03) : 783 - 798
  • [38] Quantization of inhomogeneous Lie bialgebras
    Kulish, PP
    Mudrov, AI
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 42 (1-2) : 64 - 77
  • [39] Quantization of Lie bialgebras, III
    Etingof P.
    Kazhdan D.
    Selecta Mathematica, 1998, 4 (2) : 233 - 269
  • [40] A triple construction for Lie bialgebras
    Grabowski, JE
    PACIFIC JOURNAL OF MATHEMATICS, 2005, 221 (02) : 281 - 301