Quantization of inhomogeneous Lie bialgebras

被引:3
|
作者
Kulish, PP
Mudrov, AI
机构
[1] Steklov Math Inst, St Petersburg Dept, St Petersburg 191011, Russia
[2] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
quantization; inhomogeneous Lie bialgebras;
D O I
10.1016/S0393-0440(01)00073-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A self-dual class of Lie bialgebra structures (g, g*) on inhomogeneous Lie algebras g describing kinematical symmetries is considered. In that class, both g and g* split into the semi-direct sums g = h (sic) and g* = h* (sic)* with abelian ideals of translations v and h*. We build the explicit quantization of the universal enveloping algebra U (g), including the coproduct, commutation relations among generators, and, in case of coboundary g, the universal R-matrix. This class of Lie bialgebras forms a self-dual category stable under the classical double procedure. The quantization turns out to be a functor to the category of Hopf algebras which commutes with operations of dualization and double. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:64 / 77
页数:14
相关论文
共 50 条
  • [1] Quantization of Γ-Lie bialgebras
    Enriquez, Benjamin
    Halbout, Gilles
    JOURNAL OF ALGEBRA, 2008, 319 (09) : 3752 - 3769
  • [2] QUANTIZATION OF LIE BIALGEBRAS
    RESHETIKHIN, N
    DUKE MATHEMATICAL JOURNAL, 1992, 67 (01) : 143 - 151
  • [3] Quantization of Lie bialgebras revisited
    Pavol Ševera
    Selecta Mathematica, 2016, 22 : 1563 - 1581
  • [4] On Quantization Functors of Lie Bialgebras
    B. Enriquez
    Acta Applicandae Mathematica, 2002, 73 : 133 - 140
  • [5] Quantization of Lie bialgebras revisited
    Severa, Pavol
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1563 - 1581
  • [6] Quantization of Lie bialgebras, III
    Etingof P.
    Kazhdan D.
    Selecta Mathematica, 1998, 4 (2) : 233 - 269
  • [7] Quantization of Lie bialgebras, II
    Etingof P.
    Kazhdan D.
    Selecta Mathematica, 1998, 4 (2) : 213 - 231
  • [8] On quantization functors of Lie bialgebras
    Enriquez, B
    ACTA APPLICANDAE MATHEMATICAE, 2002, 73 (1-2) : 133 - 140
  • [9] Quantization of coboundary Lie bialgebras
    Enriquez, Benjamin
    Halbout, Gilles
    ANNALS OF MATHEMATICS, 2010, 171 (02) : 1267 - 1345
  • [10] Quantization of triangular Lie bialgebras
    Dolgushev, VA
    Isaev, AP
    Lyakhovich, SL
    Sharapov, AA
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 (11) : 1195 - 1200