Extension of the mortar finite element method to a variational inequality modeling unilateral contact

被引:63
|
作者
Ben Belgacem, F [1 ]
Hild, P [1 ]
Laborde, P [1 ]
机构
[1] Univ Toulouse 3, Unite Mixte Rech, CNRS, INSAT,UMR 5640, F-31062 Toulouse 4, France
来源
关键词
D O I
10.1142/S0218202599000154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to extend the mortar finite element method to handle the unilateral contact model between two deformable bodies. The corresponding variational inequality is approximated using finite element meshes which do not fit on the contact zone. The mortar technique allows one to match these independent discretizations of each solid and takes into account the unilateral contact conditions in a convenient way. By using an adaptation of Falk's lemma and a bootstrap argument, we give an upper bound of the convergence rate similar to the one already obtained for compatible meshes.
引用
收藏
页码:287 / 303
页数:17
相关论文
共 50 条
  • [41] Quadratic finite element methods for unilateral contact problems
    Hild, P
    Laborde, P
    APPLIED NUMERICAL MATHEMATICS, 2002, 41 (03) : 401 - 421
  • [42] On optimal finite element approximation for unilateral contact problems
    Hild, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (10): : 1233 - 1236
  • [43] A mortar-finite element formulation for frictional contact problems
    McDevitt, TW
    Laursen, TA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 48 (10) : 1525 - 1547
  • [44] A mortar-finite element approach to lubricated contact problems
    Yang, Bin
    Laursen, Tod A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (47-48) : 3656 - 3669
  • [45] A FINITE-ELEMENT METHOD FOR UNILATERAL CONTACT AND FRICTION PROBLEM INVOLVING FINITE STRAIN AND LARGE DISPLACEMENT
    BRUNET, M
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1988, 7 : 209 - 220
  • [46] FINITE ELEMENT ANALYSIS FOR A REGULARIZED VARIATIONAL INEQUALITY OF THE SECOND KIND
    Zhang, Tie
    Zhang, S.
    Azari, H.
    APPLICATIONS OF MATHEMATICS 2012, 2012, : 317 - 331
  • [47] Finite element approximations to an evolutionary variational inequality with a volterra term
    Nair, P
    Pani, AK
    TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS, PROCEEDINGS, 2002, 72 : 317 - 337
  • [48] About the mortar finite element method for non-local Coulomb law in contact problems
    Bayada, G
    Chambat, M
    Lhalouani, K
    Sassi, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12): : 1323 - 1328
  • [49] Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces
    Tal, Yuval
    Hager, Bradford H.
    COMPUTATIONAL MECHANICS, 2018, 61 (06) : 699 - 716
  • [50] Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces
    Yuval Tal
    Bradford H. Hager
    Computational Mechanics, 2018, 61 : 699 - 716