Extension of the mortar finite element method to a variational inequality modeling unilateral contact

被引:63
|
作者
Ben Belgacem, F [1 ]
Hild, P [1 ]
Laborde, P [1 ]
机构
[1] Univ Toulouse 3, Unite Mixte Rech, CNRS, INSAT,UMR 5640, F-31062 Toulouse 4, France
来源
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES | 1999年 / 9卷 / 02期
关键词
D O I
10.1142/S0218202599000154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to extend the mortar finite element method to handle the unilateral contact model between two deformable bodies. The corresponding variational inequality is approximated using finite element meshes which do not fit on the contact zone. The mortar technique allows one to match these independent discretizations of each solid and takes into account the unilateral contact conditions in a convenient way. By using an adaptation of Falk's lemma and a bootstrap argument, we give an upper bound of the convergence rate similar to the one already obtained for compatible meshes.
引用
收藏
页码:287 / 303
页数:17
相关论文
共 50 条
  • [31] A variational functional for the finite element method
    Bunting, CF
    Davis, WA
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - 1996 DIGEST, VOLS 1-3, 1996, : 162 - 165
  • [32] A multiscale mortar mixed finite element method
    Arbogast, Todd
    Pencheva, Gergina
    Wheeler, Mary F.
    Yotov, Ivan
    MULTISCALE MODELING & SIMULATION, 2007, 6 (01): : 319 - 346
  • [33] Variational integrators and the finite element method
    Chen, Jing-Bo
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (02) : 941 - 958
  • [34] The Mortar finite element method with Lagrange multipliers
    Ben Belgacem, F
    NUMERISCHE MATHEMATIK, 1999, 84 (02) : 173 - 197
  • [35] A multigrid algorithm for the mortar finite element method
    Braess, D
    Dahmen, W
    Wieners, C
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) : 48 - 69
  • [36] Coupling a NURBS contact interface with a higher order finite element discretization for contact problems using the mortar method
    Otto, Peter
    De Lorenzis, Laura
    Unger, Joerg F.
    COMPUTATIONAL MECHANICS, 2019, 63 (06) : 1203 - 1222
  • [37] Coupling a NURBS contact interface with a higher order finite element discretization for contact problems using the mortar method
    Peter Otto
    Laura De Lorenzis
    Jörg F. Unger
    Computational Mechanics, 2019, 63 : 1203 - 1222
  • [38] Virtual Element Method for a History-Dependent Variational-Hemivariational Inequality in Contact Problems
    Xiao, Wenqiang
    Ling, Min
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [39] A mortar finite element approach for point, line, and surface contact
    Farah, P.
    Wall, W. A.
    Popp, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 114 (03) : 255 - 291
  • [40] Virtual Element Method for a History-Dependent Variational-Hemivariational Inequality in Contact Problems
    Wenqiang Xiao
    Min Ling
    Journal of Scientific Computing, 2023, 96