Excess in arrangements of segments

被引:0
|
作者
Sharir, M [1 ]
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
基金
美国国家科学基金会;
关键词
segment intersection; computational geometry; combinatorial geometry;
D O I
10.1016/0020-0190(96)00065-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let S be a set of n line segments in the plane. The excess of S is the number of repetitions of segments of S along the boundary of the same face of A(S), summed over all segments and faces. We show that the excess of S is at most O(n log log n), improving a previous O(n log n) bound given by Aronov and Sharir (1994).
引用
收藏
页码:245 / 247
页数:3
相关论文
共 50 条
  • [1] Hiding points in arrangements of segments
    Hurtado, F
    Serra, O
    Urrutia, J
    DISCRETE MATHEMATICS, 1996, 162 (1-3) : 187 - 197
  • [2] IMPLICITLY REPRESENTING ARRANGEMENTS OF LINES OR SEGMENTS
    EDELSBRUNNER, H
    GUIBAS, L
    HERSHBERGER, J
    SEIDEL, R
    SHARIR, M
    SNOEYINK, J
    WELZL, E
    DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) : 433 - 466
  • [3] Computing many faces in arrangements of lines and segments
    Agarwal, PK
    Matousek, J
    Schwarzkopf, O
    SIAM JOURNAL ON COMPUTING, 1998, 27 (02) : 491 - 505
  • [4] On Levels in Arrangements of Lines, Segments, Planes, and Triangles%
    P. K. Agarwal
    B. Aronov
    T. M. Chan
    M. Sharir
    Discrete & Computational Geometry, 1998, 19 : 315 - 331
  • [5] The Complexity of the Outer Face in Arrangements of Random Segments
    Alon, Noga
    Halperin, Dan
    Nechushtan, Oren
    Sharir, Micha
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SGG'08), 2008, : 69 - 78
  • [6] Ramsey-type constructions for arrangements of segments
    Kyncl, Jan
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (03) : 336 - 339
  • [7] CONSTRUCTING MANY FACES IN ARRANGEMENTS OF LINES AND SEGMENTS∗
    Wang, Haitao
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2023, 14 (01) : 287 - 308
  • [8] Constructing Many Faces in Arrangements of Lines and Segments
    Wang, Haitao
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 3168 - 3180
  • [9] On levels in arrangements of lines, segments, planes, and triangles
    Agarwal, PK
    Aronov, B
    Chan, TM
    Sharir, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) : 315 - 331
  • [10] THE COMPLEXITY AND CONSTRUCTION OF MANY FACES IN ARRANGEMENTS OF LINES AND OF SEGMENTS
    EDELSBRUNNER, H
    GUIBAS, LJ
    SHARIR, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) : 161 - 196