Hiding points in arrangements of segments

被引:1
|
作者
Hurtado, F
Serra, O
Urrutia, J
机构
[1] UNIV POLITECN CATALUNYA,DEPT MATEMAT APLICADA 2,BARCELONA 08028,SPAIN
[2] UNIV OTTAWA,OTTAWA,ON K1N 6N5,CANADA
关键词
D O I
10.1016/0012-365X(95)00285-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A hidden set is a set of points such that no two points in the set are visible to each other. In this paper we study hidden sets of points in arrangements of segments, and we provide bounds for its maximum size that are optimal up to a factor 2.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 50 条
  • [1] ARRANGEMENTS OF SEGMENTS THAT SHARE END-POINTS - SINGLE FACE RESULTS
    ARKIN, EM
    HALPERIN, D
    KEDEM, K
    MITCHELL, JSB
    NAOR, N
    DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 13 (3-4) : 257 - 270
  • [2] Excess in arrangements of segments
    Sharir, M
    INFORMATION PROCESSING LETTERS, 1996, 58 (05) : 245 - 247
  • [3] ORDINARY POINTS IN ARRANGEMENTS
    MEYER, W
    ISRAEL JOURNAL OF MATHEMATICS, 1974, 17 (02) : 124 - 135
  • [4] IMPLICITLY REPRESENTING ARRANGEMENTS OF LINES OR SEGMENTS
    EDELSBRUNNER, H
    GUIBAS, L
    HERSHBERGER, J
    SEIDEL, R
    SHARIR, M
    SNOEYINK, J
    WELZL, E
    DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) : 433 - 466
  • [5] SIMPLE POINTS IN PSEUDOLINE ARRANGEMENTS
    KELLY, LM
    ROTTENBE.R
    PACIFIC JOURNAL OF MATHEMATICS, 1972, 40 (03) : 617 - &
  • [6] OPTIMAL TRIANGULATIONS OF POINTS AND SEGMENTS WITH STEINER POINTS
    Aronov, Boris
    Asano, Tetsuo
    Funke, Stefan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2010, 20 (01) : 89 - 104
  • [7] Computing many faces in arrangements of lines and segments
    Agarwal, PK
    Matousek, J
    Schwarzkopf, O
    SIAM JOURNAL ON COMPUTING, 1998, 27 (02) : 491 - 505
  • [8] On Levels in Arrangements of Lines, Segments, Planes, and Triangles%
    P. K. Agarwal
    B. Aronov
    T. M. Chan
    M. Sharir
    Discrete & Computational Geometry, 1998, 19 : 315 - 331
  • [9] The Complexity of the Outer Face in Arrangements of Random Segments
    Alon, Noga
    Halperin, Dan
    Nechushtan, Oren
    Sharir, Micha
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SGG'08), 2008, : 69 - 78
  • [10] Ramsey-type constructions for arrangements of segments
    Kyncl, Jan
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (03) : 336 - 339