Excess in arrangements of segments

被引:0
|
作者
Sharir, M [1 ]
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
基金
美国国家科学基金会;
关键词
segment intersection; computational geometry; combinatorial geometry;
D O I
10.1016/0020-0190(96)00065-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let S be a set of n line segments in the plane. The excess of S is the number of repetitions of segments of S along the boundary of the same face of A(S), summed over all segments and faces. We show that the excess of S is at most O(n log log n), improving a previous O(n log n) bound given by Aronov and Sharir (1994).
引用
收藏
页码:245 / 247
页数:3
相关论文
共 50 条