Bulk universality holds in measure for compactly supported measures

被引:16
|
作者
Lubinsky, Doron S. [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
来源
基金
美国国家科学基金会;
关键词
EIGENVALUE CORRELATIONS; CHRISTOFFEL FUNCTIONS; ASYMPTOTICS; POLYNOMIALS; STATISTICS; LIMITS;
D O I
10.1007/s11854-012-0006-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let mu be a measure with compact support, with orthonormal polynomials {p(n)} and associated reproducing kernels {K-n}. We show that bulk universality holds in measure in {xi : mu' (xi) > 0}. More precisely, given epsilon, r > 0, the linear Lebesgue measure of the set {xi : mu' (xi) > 0} and for which sup(vertical bar u vertical bar,vertical bar v vertical bar <= r) vertical bar K-n(xi + u/(K) over tilde (n)(xi,xi) + v/(K) over tilde (n)(xi,xi))/K-n(xi,xi) - sin pi(u - v)/pi(u - v)vertical bar >= epsilon approaches 0 as n -> infinity. There are no local or global regularity conditions on the measure mu.
引用
收藏
页码:219 / 253
页数:35
相关论文
共 50 条
  • [31] MULTISCALE ANALYSIS AND COMPACTLY SUPPORTED WAVELETS
    LEMARIE, PG
    LECTURE NOTES IN MATHEMATICS, 1990, 1438 : 26 - 38
  • [32] Construction of compactly supported biorthogonal wavelets
    Riemenschneider, Sherman D.
    Shen, Zuowei
    Physics and Modern Topics in Mechanical and Electrical Engineering, 1999, : 201 - 206
  • [33] Construction of Compactly Supported Shearlet Frames
    Pisamai Kittipoom
    Gitta Kutyniok
    Wang-Q Lim
    Constructive Approximation, 2012, 35 : 21 - 72
  • [34] Generators for Rings of Compactly Supported Distributions
    Sasane, Sara Maad
    Sasane, Amol
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 69 (01) : 63 - 71
  • [35] Bivariate compactly supported symmetric framelets
    Pan, ZS
    Wavelet Analysis and Active Media Technology Vols 1-3, 2005, : 1247 - 1253
  • [36] BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS
    COHEN, A
    DAUBECHIES, I
    FEAUVEAU, JC
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) : 485 - 560
  • [37] On the existence of compactly supported dual wavelets
    LemarieRieusset, PG
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1997, 4 (01) : 117 - 118
  • [38] The Penrose transform for compactly supported cohomology
    Bailey, TN
    David, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 : 131 - 141
  • [39] PARAMETRIZATION OF COMPACTLY SUPPORTED ORTHONORMAL WAVELETS
    ZOU, H
    TEWFIK, AH
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (03) : 1428 - 1431
  • [40] A CHARACTERIZATION OF COMPACTLY SUPPORTED ORTHONORMAL WAVELETS
    SCHNEID, J
    BIT, 1994, 34 (02): : 295 - 303