Bulk universality holds in measure for compactly supported measures

被引:16
|
作者
Lubinsky, Doron S. [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
来源
基金
美国国家科学基金会;
关键词
EIGENVALUE CORRELATIONS; CHRISTOFFEL FUNCTIONS; ASYMPTOTICS; POLYNOMIALS; STATISTICS; LIMITS;
D O I
10.1007/s11854-012-0006-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let mu be a measure with compact support, with orthonormal polynomials {p(n)} and associated reproducing kernels {K-n}. We show that bulk universality holds in measure in {xi : mu' (xi) > 0}. More precisely, given epsilon, r > 0, the linear Lebesgue measure of the set {xi : mu' (xi) > 0} and for which sup(vertical bar u vertical bar,vertical bar v vertical bar <= r) vertical bar K-n(xi + u/(K) over tilde (n)(xi,xi) + v/(K) over tilde (n)(xi,xi))/K-n(xi,xi) - sin pi(u - v)/pi(u - v)vertical bar >= epsilon approaches 0 as n -> infinity. There are no local or global regularity conditions on the measure mu.
引用
收藏
页码:219 / 253
页数:35
相关论文
共 50 条