Efficient implementation of the Metropolis-Hastings algorithm, with application to the Cormack-Jolly-Seber model

被引:1
|
作者
Link, William A. [1 ]
Barker, Richard J. [2 ]
机构
[1] USGS Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA
[2] Univ Otago, Dept Math & Stat, Dunedin, New Zealand
关键词
Cormack-Jolly-Seber model; Mark-recapture analysis; Markov chain Monte Carlo; Metropolis-Hastings algorithm;
D O I
10.1007/s10651-007-0037-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Judicious choice of candidate generating distributions improves efficiency of the Metropolis-Hastings algorithm. In Bayesian applications, it is sometimes possible to identify an approximation to the target posterior distribution; this approximate posterior distribution is a good choice for candidate generation. These observations are applied to analysis of the Cormack-Jolly-Seber model and its extensions.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 50 条
  • [41] Modified Metropolis-Hastings algorithm with reduced chain correlation for efficient subset simulation
    Santoso, A. M.
    Phoon, K. K.
    Quek, S. T.
    PROBABILISTIC ENGINEERING MECHANICS, 2011, 26 (02) : 331 - 341
  • [42] An Enhanced Metropolis-Hastings Algorithm Based on Gaussian Processes
    Chowdhury, Asif
    Terejanu, Gabriel
    MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2016, : 227 - 233
  • [43] FULLY ADAPTIVE GAUSSIAN MIXTURE METROPOLIS-HASTINGS ALGORITHM
    Luengo, David
    Martino, Luca
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6148 - 6152
  • [44] An Improved Metropolis-Hastings Algorithm Based on Particle Filter
    Yang, Yanfang
    Zhang, Yanjie
    Zhou, Yingjun
    Zhang, Wenhua
    2009 IITA INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS ENGINEERING, PROCEEDINGS, 2009, : 415 - 417
  • [45] Metropolis-Hastings Expectation Maximization Algorithm for Incomplete Data
    Cheon, Sooyoung
    Lee, Heechan
    KOREAN JOURNAL OF APPLIED STATISTICS, 2012, 25 (01) : 183 - 196
  • [46] SAMPLING UNNORMALIZED PROBABILITIES: AN ALTERNATIVE TO THE METROPOLIS-HASTINGS ALGORITHM
    Walker, Stephen G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02): : A482 - A494
  • [47] Majorize-Minimize Adapted Metropolis-Hastings Algorithm
    Marnissi, Yosra
    Chouzenoux, Emilie
    Benazza-Benyahia, Amel
    Pesquet, Jean-Christophe
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 (68) : 2356 - 2369
  • [48] Applications of Metropolis-Hastings algorithm to solar Astrophysical data
    Adamakis, S.
    Morton-Jones, T. J.
    Walsh, R. W.
    STATISTICAL CHALLENGES IN MODERN ASTRONOMY IV, 2007, 371 : 401 - 402
  • [49] SPECTRAL GAPS FOR A METROPOLIS-HASTINGS ALGORITHM IN INFINITE DIMENSIONS
    Hairer, Martin
    Stuart, Andrew M.
    Vollmer, Sebastian J.
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (06): : 2455 - 2490
  • [50] Not every Gibbs sampler is a special case of the Metropolis-Hastings algorithm
    VanDerwerken, Douglas
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (20) : 1005 - 1009