Efficient implementation of the Metropolis-Hastings algorithm, with application to the Cormack-Jolly-Seber model

被引:1
|
作者
Link, William A. [1 ]
Barker, Richard J. [2 ]
机构
[1] USGS Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA
[2] Univ Otago, Dept Math & Stat, Dunedin, New Zealand
关键词
Cormack-Jolly-Seber model; Mark-recapture analysis; Markov chain Monte Carlo; Metropolis-Hastings algorithm;
D O I
10.1007/s10651-007-0037-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Judicious choice of candidate generating distributions improves efficiency of the Metropolis-Hastings algorithm. In Bayesian applications, it is sometimes possible to identify an approximation to the target posterior distribution; this approximate posterior distribution is a good choice for candidate generation. These observations are applied to analysis of the Cormack-Jolly-Seber model and its extensions.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 50 条
  • [31] Geometric convergence of the Metropolis-Hastings simulation algorithm
    Holden, L
    STATISTICS & PROBABILITY LETTERS, 1998, 39 (04) : 371 - 377
  • [32] A Metropolis-Hastings algorithm for dynamic causal models
    Chumbley, Justin R.
    Friston, Karl J.
    Fearn, Tom
    Kiebel, Stefan J.
    NEUROIMAGE, 2007, 38 (03) : 478 - 487
  • [33] Influence of study design and movement behavior on performance of open population spatial Cormack-Jolly-Seber models: application to acoustic telemetry technology
    Jason L. Fischer
    Travis O. Brenden
    Lucas R. Nathan
    Environmental Biology of Fishes, 2022, 105 : 2027 - 2043
  • [34] Influence of study design and movement behavior on performance of open population spatial Cormack-Jolly-Seber models: application to acoustic telemetry technology
    Fischer, Jason L.
    Brenden, Travis O.
    Nathan, Lucas R.
    ENVIRONMENTAL BIOLOGY OF FISHES, 2022, 105 (12) : 2027 - 2043
  • [35] An Efficient Minibatch Acceptance Test for Metropolis-Hastings
    Seita, Daniel
    Pan, Xinlei
    Chen, Haoyu
    Canny, John
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 5359 - 5363
  • [36] Note on the sampling distribution for the Metropolis-Hastings algorithm
    Geweke, J
    Tanizaki, H
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (04) : 775 - 789
  • [37] RooMCMarkovChain A METROPOLIS-HASTINGS ALGORITHM FOR THE ROOT FRAMEWORK
    Dahme, Oliver
    ACTA PHYSICA POLONICA B, 2018, 49 (06): : 1097 - 1104
  • [38] Modified Metropolis-Hastings algorithm with delayed rejection
    Zuev, K. M.
    Katafygiotis, L. S.
    PROBABILISTIC ENGINEERING MECHANICS, 2011, 26 (03) : 405 - 412
  • [39] Survival Estimation Using Multistate Cormack-Jolly-Seber Models-The Case of the Bearded Vulture Gypaetus barbatus in Spain
    Navarro, Inmaculada
    Farfan, Miguel Angel
    Gil, Juan Antonio
    Munoz, Antonio Roman
    ANIMALS, 2024, 14 (03):
  • [40] Comparison of Tributary Survival Estimates of Steelhead using Cormack-Jolly-Seber and Barker Models: Implications for Sampling Efforts and Designs
    Conner, Mary M.
    Bennett, Stephen N.
    Saunders, W. Carl
    Bouwes, Nicolaas
    TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY, 2015, 144 (01) : 34 - 47