A study of farthest points and uniquely remotal sets

被引:0
|
作者
Sangeeta [1 ]
Narang, T. D. [2 ]
机构
[1] Amardeep Singh Shergill Mem Coll, Dept Math, Mukandpur 144507, Punjab, India
[2] Guru Nanak Dev Univ, Dept Math, Amritsar 143005, Punjab, India
关键词
Farthest point; Remotal set; Uniquely remotal set; Farthest point map; Isolated point;
D O I
10.1080/09720502.2019.1661602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a bounded subset K of a metric space (X, d), an element k(0) is an element of K is called a farthest point to an x is an element of X if d(x,k(0)) = sup(k is an element of K)d(x,k). The set of all farthest points to x in K is denoted by F-K(x). The set K is said to be remotal(uniquely remotal) if F-K(x) is non-empty(a singleton) for each x is an element of X. In this paper, we discuss the nature and structure of sets of farthest points and conditions under which sets are uniquely remotal. The underlying spaces are metric spaces and linear metric spaces.
引用
收藏
页码:689 / 696
页数:8
相关论文
共 50 条
  • [1] A STUDY OF UNIQUELY REMOTAL SETS
    Khalil, R.
    Sababheh, M.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (07) : 1233 - 1239
  • [2] ON UNIQUELY REMOTAL SETS
    NIKNAM, A
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1984, 15 (10): : 1079 - 1083
  • [3] On Singletonness of Remotal and Uniquely Remotal Sets
    Narang, T. D.
    Sangeeta
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2011, 18 (01) : 113 - 120
  • [4] ON SINGLETONNESS OF UNIQUELY REMOTAL SETS
    ASTANEH, AA
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1986, 17 (09): : 1137 - 1139
  • [5] A remark on uniquely remotal sets
    Mirmostafaee, AK
    Niknam, A
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1998, 29 (08): : 849 - 854
  • [6] Uniquely Remotal Sets in Banach Spaces
    Sababheh, M.
    Yousef, A.
    Khalil, R.
    FILOMAT, 2017, 31 (09) : 2773 - 2777
  • [7] ON REMOTAL POINTS OF PAIRS OF SETS
    GOVINDARAJULU, P
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1984, 15 (08): : 885 - 888
  • [8] Solarity of Chebyshev Sets in Dual Spaces and Uniquely Remotal Sets
    A. R. Alimov
    Lobachevskii Journal of Mathematics, 2021, 42 : 785 - 790
  • [9] Solarity of Chebyshev Sets in Dual Spaces and Uniquely Remotal Sets
    Alimov, A. R.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (04) : 785 - 790
  • [10] FARTHEST POINTS OF SETS
    PANDA, BB
    KAPOOR, OP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 62 (02) : 345 - 353