The Mean Ergodic Theorem in symmetric spaces

被引:2
|
作者
Sukochev, Fedor [1 ]
Veksler, Aleksandr [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Kensington, NSW 2052, Australia
[2] Uzbek Acad Sci, VI Romanovskiy Inst Math, Tashkent, Uzbekistan
关键词
mean ergodic theorem; symmetric spaces; singular functional; FUNCTIONALS;
D O I
10.4064/sm170311-31-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the validity of the Mean Ergodic Theorem in a symmetric Banach function space E associated to an atomless Lebesgue probability space (Omega, nu). We show that the Mean Ergodic Theorem holds if and only if E is separable. That is, if T : Omega -> Omega is a measure preserving bijection then the Cesaro averages of {f o T-k}(k >= 0) converge in a symmetric Banach function space E for every f is an element of E if and only if E is separable. When E is non-separable the Cesaro averages may converge in E for some f is an element of E, but not all. It is also possible that every f is an element of E can have an equimeasurable copy whose Cesaro averages do converge in E. We demonstrate this using sufficient conditions intimately connected with the theory of singular traces.
引用
收藏
页码:229 / 253
页数:25
相关论文
共 50 条
  • [31] A Mean Ergodic Theorem for Affine Nonexpansive Mappings in Nonpositive Curvature Metric Spaces
    Khatibzadeh, Hadi
    Pouladi, Hadi
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (01): : 111 - 126
  • [32] Mean ergodic theorem for semigroups of linear operators in multi-Banach spaces
    Hassan Morghi Kenari
    Reza Saadati
    Mahdi Azhini
    Yeol Je Cho
    Journal of Inequalities and Applications, 2014
  • [33] ON MEAN ERGODIC THEOREM FOR WEIGHTED AVERAGES
    HANSON, DL
    PLEDGER, G
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 13 (02): : 141 - &
  • [34] HARMONIZABLE PROCESSES AND MEAN ERGODIC THEOREM
    NAGABHUSHANAM, K
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1969, 31 (DEC): : 413 - 420
  • [35] Generalized limits and a mean ergodic theorem
    Li, SY
    Shaw, SY
    STUDIA MATHEMATICA, 1996, 121 (03) : 207 - 219
  • [36] A RENEWAL TYPE MEAN ERGODIC THEOREM
    KRENGEL, U
    ROTTGER, R
    WACKER, U
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 64 (02): : 269 - 274
  • [37] A MEAN ERGODIC THEOREM FOR RESOLVENT OPERATORS
    LIZAMA, C
    SEMIGROUP FORUM, 1993, 47 (02) : 227 - 230
  • [38] A QUANTITATIVE MULTIPARAMETER MEAN ERGODIC THEOREM
    Sipos, Andrei
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 314 (01) : 209 - 218
  • [39] A NOTE ON THE RANDOM MEAN ERGODIC THEOREM
    SALESKI, A
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 52 (01): : 41 - 44
  • [40] ERGODIC THEOREMS IN SYMMETRIC SEQUENCE SPACES
    Chilin, Vladimir
    Azizov, Azizkhon
    COLLOQUIUM MATHEMATICUM, 2019, 156 (01) : 57 - 68