The Mean Ergodic Theorem in symmetric spaces

被引:2
|
作者
Sukochev, Fedor [1 ]
Veksler, Aleksandr [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Kensington, NSW 2052, Australia
[2] Uzbek Acad Sci, VI Romanovskiy Inst Math, Tashkent, Uzbekistan
关键词
mean ergodic theorem; symmetric spaces; singular functional; FUNCTIONALS;
D O I
10.4064/sm170311-31-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the validity of the Mean Ergodic Theorem in a symmetric Banach function space E associated to an atomless Lebesgue probability space (Omega, nu). We show that the Mean Ergodic Theorem holds if and only if E is separable. That is, if T : Omega -> Omega is a measure preserving bijection then the Cesaro averages of {f o T-k}(k >= 0) converge in a symmetric Banach function space E for every f is an element of E if and only if E is separable. When E is non-separable the Cesaro averages may converge in E for some f is an element of E, but not all. It is also possible that every f is an element of E can have an equimeasurable copy whose Cesaro averages do converge in E. We demonstrate this using sufficient conditions intimately connected with the theory of singular traces.
引用
收藏
页码:229 / 253
页数:25
相关论文
共 50 条
  • [21] MEAN ERGODIC THEOREM
    MILLET, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (16): : 1103 - 1106
  • [22] The mean ergodic theorem for nonexpansive mappings in multi-Banach spaces
    Kenari, Hassan Morghi
    Saadati, Reza
    Cho, Yeol Je
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [23] The mean ergodic theorem for nonexpansive mappings in multi-Banach spaces
    Hassan Morghi Kenari
    Reza Saadati
    Yeol Je Cho
    Journal of Inequalities and Applications, 2014
  • [24] GENERALIZATION OF MEAN ERGODIC THEOREM
    LEVIATAN, D
    RAMANUJA.MS
    STUDIA MATHEMATICA, 1971, 39 (02) : 113 - &
  • [25] MEAN ERGODIC THEOREM OF SINE
    LLOYD, SP
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 56 (APR) : 121 - 126
  • [26] A GENERALIZATION OF MEAN ERGODIC THEOREM
    LEVIATAN, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 247 - &
  • [27] MEAN ERGODIC THEOREM AND SATURATION
    BUTZER, PL
    WESTPHAL, U
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1971, 20 (12) : 1163 - &
  • [28] MEAN ERGODIC THEOREM OF SINE
    LLOYD, SP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A175 - A175
  • [29] EQUICONTINUITY, AFFINE MEAN ERGODIC THEOREM AND LINEAR EQUATIONS IN RANDOM NORMED SPACES
    RADU, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 57 (02) : 299 - 303
  • [30] Mean ergodic theorem for semigroups of linear operators in multi-Banach spaces
    Kenari, Hassan Morghi
    Saadati, Reza
    Azhini, Mahdi
    Cho, Yeol Je
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,