Asymptotic behavior of a solution to the drift-diffusion equation for a fast-diffusion case

被引:1
|
作者
Ogawa, Takayoshi [1 ]
Suguro, Takeshi [2 ]
机构
[1] Tohoku Univ, Math Inst, Res Alliance Ctr Math Sci, Sendai, Miyagi 9808578, Japan
[2] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
KELLER-SEGEL MODEL; POROUS-MEDIUM EQUATION; TIME BLOW-UP; RENYI ENTROPY; INEQUALITIES; EVOLUTION; CONVERGENCE; STABILITY; PLANCK;
D O I
10.1016/j.jde.2021.10.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider asymptotic behavior of a solution to the drift-diffusion equation for a fast-diffusion case. In the degenerate drift-diffusion equation, it is known that large time behavior of solutions converges to the Zel'dovich-Kompaneetz-Barenblatt (ZKB) function. For a fast-diffusion case, we show that the asymptotic profile for a solution is the generalized ZKB function such as the Talenti function. We use the entropy dissipation method combining the logarithmic Sobolev and the Shannon inequalities for the Renyi entropy that is known as an extension of the Boltzmann-Shannon entropy. (C) 2021 The Authors. Published by Elsevier Inc.
引用
收藏
页码:114 / 136
页数:23
相关论文
共 50 条
  • [31] New Galerkin framework for the drift-diffusion equation in semiconductors
    Politecnico di Milano, Milano, Italy
    East-West Journal of Numerical Mathematics, 1998, 6 (02): : 101 - 135
  • [32] ON THE DIFFERENTIABILITY ISSUE OF THE DRIFT-DIFFUSION EQUATION WITH NONLOCAL LEVY-TYPE DIFFUSION
    Xue, Liutang
    Ye, Zhuan
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 293 (02) : 471 - 510
  • [33] Classical localization for the drift-diffusion equation on a Cayley tree
    Bressloff, PC
    Dwyer, VM
    Kearney, MJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (19): : 6161 - 6168
  • [34] ON THE UNIQUENESS OF THE SOLUTION TO THE DRIFT-DIFFUSION MODEL IN SEMICONDUCTOR ANALYSIS
    NACHAOUI, A
    NASSIF, NR
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1992, 11 (03) : 377 - 390
  • [35] Fast solutions and asymptotic behavior in a reaction-diffusion equation
    Arias, Margarita
    Campos, Juan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) : 5406 - 5439
  • [36] ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF A DIFFUSION EQUATION WITH NONLOCAL BOUNDARY CONDITIONS
    Kakumani, Bhargav Kumar
    Tumuluri, Suman Kumar
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (02): : 407 - 419
  • [37] Drift-diffusion equations and applications
    Allegretto, W
    MATHEMATICAL PROBLEMS IN SEMINCONDUCTOR PHYSICS, 2003, 1823 : 57 - 95
  • [38] The study of a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    ICM 2001: 13TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, PROCEEDINGS, 2001, : 54 - 58
  • [39] Numerical methods for a quantum drift-diffusion equation in semiconductor physics
    Escobedo, Ramon
    Bonilla, Luis L.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2006, 40 (01) : 3 - 13
  • [40] Existence and analyticity of solutions to the drift-diffusion equation with critical dissipation
    Yamamoto, Masakazu
    Kato, Keiichi
    Sugiyama, Yuusuke
    HIROSHIMA MATHEMATICAL JOURNAL, 2014, 44 (03) : 275 - 313