A Generalization of Schep's Theorem on the Positive Definiteness of a Piecewise Linear Function

被引:3
|
作者
Zastavnyi, V. P. [1 ]
机构
[1] Donetsk Natl Univ, UA-83114 Donetsk, Ukraine
关键词
positive definite functions; Fourier transform; Bochner-Khinchine theorem; piece-wise linear functions with equidistant nodes;
D O I
10.1134/S0001434620050272
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Schep proved that, for a piecewise linear function with nodes at integer points, positive definiteness on Double-struck capital R is equivalent to positive definiteness on DOUBLE-STRUCK CAPITAL Z. In this paper, a similar theorem for an entire function of exponential type is proved, and a generalization Schep's theorem is obtained.
引用
收藏
页码:959 / 971
页数:13
相关论文
共 50 条
  • [41] Generalization of Obata's theorem
    J Geom Anal, 3 (357-375):
  • [42] A generalization of Ohkawa's theorem
    Casacuberta, Carles
    Gutierrez, Javier J.
    Rosicky, Jiri
    COMPOSITIO MATHEMATICA, 2014, 150 (05) : 893 - 902
  • [43] A Generalization of Pohlke's Theorem
    Bergold, Helmut
    ELEMENTE DER MATHEMATIK, 2014, 69 (02) : 57 - 60
  • [44] A generalization of Cobham's theorem
    Durand, F
    THEORY OF COMPUTING SYSTEMS, 1998, 31 (02) : 169 - 185
  • [45] A generalization of Forelli's theorem
    Joo, Jae-Cheon
    Kim, Kang-Tae
    Schmalz, Gerd
    MATHEMATISCHE ANNALEN, 2013, 355 (03) : 1171 - 1176
  • [46] On a generalization of Jentzsch's theorem
    Blatt, Hans-Peter
    Blatt, Simon
    Luh, Wolfgang
    JOURNAL OF APPROXIMATION THEORY, 2009, 159 (01) : 26 - 38
  • [47] On a Generalization of Voronin's Theorem
    Laurincikas, A.
    MATHEMATICAL NOTES, 2020, 107 (3-4) : 442 - 451
  • [48] On a generalization of Fueter's theorem
    Sommen, F
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (04): : 899 - 902
  • [49] Cauchy's theorem and generalization
    Reuss, Paul
    EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2018, 4
  • [50] A generalization of the Opial's theorem
    Cegielski, Andrzej
    CONTROL AND CYBERNETICS, 2007, 36 (03): : 601 - 610