Critical Hardy inequality on the half-space via the harmonic transplantation

被引:5
|
作者
Sano, Megumi [1 ]
Takahashi, Futoshi [2 ]
机构
[1] Hiroshima Univ, Sch Engn, Lab Math, Higashihiroshima 7398527, Japan
[2] Osaka Metropolitan Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
关键词
EXTREMAL-FUNCTIONS; CONSTANT;
D O I
10.1007/s00526-022-02265-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a critical Hardy inequality on the half-space R-+(N) by using the harmonic transplantation for functions in (W) over dot(0)(1,N) (R-+(N)). Also we give an improvement of the subcritical Hardy inequality on (W) over dot(0)(1,p) for p is an element of [2, N), which converges to the critical Hardy inequality when p NE arrow N. Sobolev type inequalities are also discussed.
引用
收藏
页数:33
相关论文
共 50 条