Lipschitz conditions on bounded harmonic functions on the upper half-space

被引:0
|
作者
Markovic, Marijan [1 ]
机构
[1] Univ Montenegro, Fac Sci & Math, Dzordza Vasingtona Bb, Podgorica 81000, Montenegro
关键词
EQUIVALENT NORMS; MAPPINGS;
D O I
10.1215/00192082-11621907
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to Lipschitz conditions on bounded harmonic functions on the upper half-space in Jn. Among other results, we prove the following one. Let U.x'; xn / be a real-valued bounded harmonic function on the upper half-space Jn C = { .x ' ; xn/ W x' E Jn1;xn E .0;oo/}, which is continuous on the closure of this domain. Assume that for E .0; 1/, there exists a constant C such that for every x' E Jn_1, we have U .x'; xn/- U .x'; 0/ <= Cxn, xnE .0;oo/. Then there exists a constant CQ such that U.x/- U.y/ <= CQx- y;x;yEJnC.
引用
收藏
页码:741 / 754
页数:14
相关论文
共 50 条
  • [1] p-Harmonic Functions in the Upper Half-space
    Abreu, E.
    Clemente, R.
    do O, J. M.
    Medeiros, E.
    POTENTIAL ANALYSIS, 2024, 60 (04) : 1383 - 1406
  • [2] FUNCTIONS IN THE UPPER HALF-SPACE
    不详
    LECTURE NOTES IN MATHEMATICS, 1989, 1381 : 48 - 59
  • [3] Harmonic Functions in Upper Half Space
    Pan, Guo-Shuang
    Qiao, Lei
    Deng, Guan-Tie
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2012, 19 (04) : 675 - 681
  • [4] A generalized Neumann problem for harmonic functions in the half-space
    Karachik, VV
    DIFFERENTIAL EQUATIONS, 1999, 35 (07) : 949 - 955
  • [5] Cluster sets of harmonic functions at the boundary of a half-space
    Gardiner, SJ
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 : 191 - 194
  • [6] Some properties of conjugate harmonic functions in a half-space
    Ryabogin, Anatoly
    Ryabogin, Dmitry
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (02) : 686 - 693
  • [7] On the Growth Behavior of Hypermonogenic Functions on Upper Half-Space
    Constales, D.
    De Almeida, R.
    Krausshar, R. S.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 757 - +
  • [8] Boundary behaviour of Neumann harmonic functions with Lebesuge, Hardy and BMO traces in the upper half-space
    Chen, Jiahe
    Li, Bo
    Ma, Bolin
    Wu, Yinhuizi
    Zhang, Chao
    NEW YORK JOURNAL OF MATHEMATICS, 2024, 30 : 897 - 924
  • [9] Asymptotic expansion for harmonic functions in the half-space with a pressurized cavity
    Aspri, Andrea
    Beretta, Elena
    Mascia, Corrado
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) : 2415 - 2430
  • [10] OPTIMAL ESTIMATES FOR THE GRADIENT OF HARMONIC FUNCTIONS IN THE MULTIDIMENSIONAL HALF-SPACE
    Kresin, Gershon
    Maz'ya, Vladimir
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (02) : 425 - 440