共 50 条
Lipschitz conditions on bounded harmonic functions on the upper half-space
被引:0
|作者:
Markovic, Marijan
[1
]
机构:
[1] Univ Montenegro, Fac Sci & Math, Dzordza Vasingtona Bb, Podgorica 81000, Montenegro
关键词:
EQUIVALENT NORMS;
MAPPINGS;
D O I:
10.1215/00192082-11621907
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This work is devoted to Lipschitz conditions on bounded harmonic functions on the upper half-space in Jn. Among other results, we prove the following one. Let U.x'; xn / be a real-valued bounded harmonic function on the upper half-space Jn C = { .x ' ; xn/ W x' E Jn1;xn E .0;oo/}, which is continuous on the closure of this domain. Assume that for E .0; 1/, there exists a constant C such that for every x' E Jn_1, we have U .x'; xn/- U .x'; 0/ <= Cxn, xnE .0;oo/. Then there exists a constant CQ such that U.x/- U.y/ <= CQx- y;x;yEJnC.
引用
收藏
页码:741 / 754
页数:14
相关论文