Random clusterings for language modeling

被引:0
|
作者
Emami, A [1 ]
Jelinek, F [1 ]
机构
[1] Johns Hopkins Univ, Ctr Language & Speech Proc, Baltimore, MD 21218 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present an application of randomization techniques to class-based n-gram language models. The idea is to derive a language model from the combination of a set of random class-based models. Each of the constituent random class-based models is built using a separate clustering obtained via a different run of a randomized clustering algorithm. The random class-based model can compensate for some of the shortcomings of conventional class-based models by combining the different solutions obtained through random clusterings. Experimental results show that the combined random class-based model improves considerably in perplexity (PPL) and word error rate (WER) over both the n-gram and baseline class-based models.
引用
收藏
页码:581 / 584
页数:4
相关论文
共 50 条
  • [31] EXPLOITING SYNTACTIC, SEMANTIC, AND LEXICAL REGULARITIES IN LANGUAGE MODELING VIA DIRECTED MARKOV RANDOM FIELDS
    Wang, Shaojun
    Wang, Shaomin
    Cheng, Li
    Greiner, Russell
    Schuurmans, Dale
    COMPUTATIONAL INTELLIGENCE, 2013, 29 (04) : 649 - 679
  • [32] LANGUAGE MODELING
    DELLER, J
    IEEE SIGNAL PROCESSING MAGAZINE, 1995, 12 (05) : 4 - +
  • [33] Subjectively interesting alternative clusterings
    Kleanthis-Nikolaos Kontonasios
    Tijl De Bie
    Machine Learning, 2015, 98 : 31 - 56
  • [34] Hierarchy cost of hierarchical clusterings
    Felix Bock
    Journal of Combinatorial Optimization, 2022, 44 : 617 - 634
  • [35] On clusterings - Good, bad and spectral
    Kannan, R
    Vempala, S
    Vetta, A
    41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, : 367 - 377
  • [36] Finding multiple stable clusterings
    Juhua Hu
    Qi Qian
    Jian Pei
    Rong Jin
    Shenghuo Zhu
    Knowledge and Information Systems, 2017, 51 : 991 - 1021
  • [37] Subjectively interesting alternative clusterings
    Kontonasios, Kleanthis-Nikolaos
    De Bie, Tijl
    MACHINE LEARNING, 2015, 98 (1-2) : 31 - 56
  • [38] Explaining clusterings of process instances
    De Koninck, Pieter
    De Weerdt, Jochen
    vanden Broucke, Seppe K. L. M.
    DATA MINING AND KNOWLEDGE DISCOVERY, 2017, 31 (03) : 774 - 808
  • [39] Robustness of the random language model
    Lalegani, Fatemeh
    De Giuli, Eric
    PHYSICAL REVIEW E, 2024, 109 (05)
  • [40] Analysis and Visualization of dynamic clusterings
    Held, Pascal
    Kruse, Rudolf
    PROCEEDINGS OF THE 46TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 2013, : 1385 - 1393